【vLLM 学习】Profiling

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。

更多 vLLM 中文文档及教程可访问 →vllm.hyper.ai/

*在线运行 vLLM 入门教程:零基础分步指南

源码 examples/offline_inference/profiling.py

复制代码
# SPDX-License-Identifier: Apache-2.0

import inspect
import json
import os
import sys
from argparse import RawTextHelpFormatter
from collections.abc import Generator
from dataclasses import asdict, dataclass
from typing import Any, Optional, TypeAlias

import torch
import tqdm

from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.profiler import layerwise_profile
from vllm.utils import FlexibleArgumentParser

BATCH_SIZE_DEFAULT = 1
PROMPT_LEN_DEFAULT = 256


@dataclass
class ProfileContext:
    engine_args: EngineArgs
    prompt_len: int
    batch_size: int

 # The profiler can run in 2 modes,
 # 1. Run profiler for user specified num_steps
 # 分析器能以 2 个模式运行,
 # 1.为用户指定的 num_steps 运行 profiler
    num_steps: Optional[int] = None
 # 2. Run profiler until all requests complete
 # 2.运行 profiler 直到所有请求完成
    complete_num_requests_per_step: Optional[int] = None

    save_chrome_traces_folder: Optional[str] = None


def get_dtype(dtype: str):
 if dtype == "torch.float":
 return torch.float
 else:
 return dtype


OutputLen_NumReqs_Map: TypeAlias = dict[int, int]
def compute_request_output_lengths(batch_size: int, step_requests: list[int]) \
 -> OutputLen_NumReqs_Map:

 """
    根据请求数量、batch_size 以及每个引擎步骤应处理的请求数 step_requests,
    确定各请求的输出长度,以确保满足 step_requests 的要求。

    示例:
    若 batch_size = 128 且 step_requests = [128, 128, 96, 64, 32, 1]
    则返回
    {2: 32, 3: 32, 4: 32, 5: 31, 6: 1},表示:
    应有 32 个请求的输出长度为 2,
    32 个请求的输出长度为 3,
    32 个请求的输出长度为 4,
    31 个请求的输出长度为 5,
    1 个请求的输出长度为 6。

    Args:
        batch_size (int): 提交分析的请求数量,对应 args.batch_size
        step_requests (list[int]): step_requests[i] 表示第 i 个引擎步骤应处理的请求数

    Returns:
        OutputLen_NumReqs_Map: 字典类型,键为输出长度,值为对应该输出长度的请求数量
    """
    ol_nr: OutputLen_NumReqs_Map = {}

 # 分配了输出长度的请求数
    num_reqs_assigned: int = 0
    num_steps: int = len(step_requests)

 # 理智检查。第一步 (预填充步骤) 必须处理所有请求。
 assert step_requests[0] == batch_size

 # 从最后一步开始分配。
    output_length: int = num_steps
 for num_requests_at_step in reversed(step_requests):
 if num_reqs_assigned == batch_size:
 break

 assert num_reqs_assigned < batch_size

 # 删除已确定的请求数量
 # 参加此步骤及以后。
        num_reqs_unassigned_at_step = num_requests_at_step - num_reqs_assigned
 assert num_reqs_unassigned_at_step >= 0

 if num_reqs_unassigned_at_step > 0:
            ol_nr[output_length] = num_reqs_unassigned_at_step
            num_reqs_assigned += num_reqs_unassigned_at_step

        output_length -= 1

 # 理智检查。
 assert sum(ol_nr.values()) == batch_size, \
 ("Number of requests in output-length assignment does not match "
 f"batch-size.\n batch size {batch_size} - "
 f"step requests {step_requests} - assignments {ol_nr}")

 # 检查输出长度是否在[1,numSteps]中。输出长度必须是
 # 至少1个请求必须参与预填充步骤。
 assert all(ol >= 1 and ol <= num_steps for ol in ol_nr), \
 ("Output lengths of requests should be in range "
 f"[1, num-engine-steps].\n batch size {batch_size} - "
 f"step requests {step_requests} - assignments {ol_nr}")

 return ol_nr


def determine_requests_per_step(context: ProfileContext) -> list[int]:

 """
    确定每个引擎步骤应处理的请求数量。
    若设置了 context.num_steps,则所有引擎步骤处理相同数量的请求,
    且输出列表的长度为 context.num_steps。

    若设置了 context.complete_num_requests_per_step,则每个解码步骤
    处理的请求数量逐次递减,直至没有待处理请求。
    此时,输出列表的大小等于处理所有请求所需的步骤数。

    Args:
        context: ProfileContext 对象。

    Returns:
        list[int]: 所有引擎步骤应处理的请求数量列表。
         output[i] 表示第 i 个步骤应处理的请求数量。
    """
 if context.num_steps:
 # 所有请求必须运行,直到 num_engine_steps 为止。这意味着
 # 他们的输出长度必须等于 num_engine_steps。
 return [context.batch_size] * context.num_steps

 assert context.complete_num_requests_per_step and \
                context.complete_num_requests_per_step > 0, \
 (f"Expected a positive complete_num_requests_per_step argument."
 f"Instead got {context.complete_num_requests_per_step}")

 # 我们在第一个解码步骤之后开始掉落。
    step_requests = [
        context.batch_size, # prefill # 预填充
        context.batch_size, # decode # 解码
 ]

    num_running_requests = context.batch_size
    num_running_requests -= context.complete_num_requests_per_step
 while num_running_requests > 0:
        step_requests.append(num_running_requests)
        num_running_requests -= context.complete_num_requests_per_step

 if step_requests[-1] != 1:

 # 在最后一步有1个请求。这通常很有用
        step_requests.append(1)

 return step_requests


def run_profile(context: ProfileContext, csv_output: Optional[str],
                json_output: Optional[str]):
 print("Run profile with:")
 for key, value in asdict(context).items():
 print(f"  {key} = {value}")

    requests_per_step: list[int] = determine_requests_per_step(context)

    ol_nr: OutputLen_NumReqs_Map = compute_request_output_lengths(
        context.batch_size, requests_per_step)

    num_steps_to_profile: int = len(requests_per_step)
    max_output_len: int = max(ol_nr.keys())
 assert max_output_len >= 1

 # 创建采样参数
    sampling_params = SamplingParams(
        temperature=0.8,
        top_p=0.95,
 # max_tokens is set on a per-request basis.
 # MAX_TOKENS 以每次要求设置。
        max_tokens=None,
        ignore_eos=True)

 # 创建 LLM
    llm = LLM(**asdict(context.engine_args))
    batch_size = context.batch_size
    prompt_len = context.prompt_len

    scheduler_config = llm.llm_engine.scheduler_config
    max_model_len = llm.llm_engine.model_config.max_model_len
    max_num_batched_tokens = scheduler_config.max_num_batched_tokens
    max_num_seqs = scheduler_config.max_num_seqs

 if batch_size * prompt_len > max_num_batched_tokens:
 print(f"ERROR: chosen batch_size * prompt_len "
 f"({batch_size} * {prompt_len} = {batch_size * prompt_len}) is  "
 f"larger than max_num_batched_tokens ({max_num_batched_tokens}) "
 f"and therefore cannot be run in a single profile step, please "
 f"choose a smaller batch size or prompt length, or increase "
 f"--max-num-batched-tokens")
        sys.exit(-1)
 if batch_size > max_num_seqs:
 print(
 f"ERROR: chosen batch_size ({batch_size}) is larger than "
 f"max_num_seqs ({max_num_seqs}) and therefore cannot be run in a "
 f"single profile step, please choose a smaller batch size")
        sys.exit(-1)
 print("llm.llm_engine.model_config.max_model_len: ",
          llm.llm_engine.model_config.max_model_len)
 if prompt_len + max_output_len > llm.llm_engine.model_config.max_model_len:
 print(f"ERROR: chosen prompt_len + max_output_len ({prompt_len} + "
 f"{max_output_len} = {prompt_len + max_output_len}) is larger "
 f"than the model's max_model_len ({max_model_len}), please "
 f"choose a smaller prompt_len or max_output_len, or increase "
 f"--max-model-len")
        sys.exit(-1)

 def add_requests():

 def get_output_len_generator() -> Generator[int, Any, Any]:
 for output_len, num_reqs in ol_nr.items():
 for _ in range(num_reqs):
 yield output_len

        output_len_generator = get_output_len_generator()
 for i in range(batch_size):
            sampling_params.max_tokens = next(output_len_generator)
 assert isinstance(sampling_params.max_tokens, int)

            prompt_token_ids = torch.randint(
                llm.llm_engine.model_config.get_vocab_size(),
                size=(prompt_len, )).tolist()

            llm.llm_engine.add_request(
                request_id=f"seq{i}",
                prompt={'prompt_token_ids': prompt_token_ids},
                params=sampling_params)

 def abort_requests():
 for i in range(batch_size):
            llm.llm_engine.abort_request(f"seq{i}")

 # 预热跑步
 print("Warm up run ...")
    add_requests()
    llm.llm_engine.step() # Prefill
    llm.llm_engine.step() # Decode
    abort_requests()

 print("Profile run ...")
    add_requests()

 with layerwise_profile() as prefill_prof:
        llm.llm_engine.step() # First step is prefill

    decode_profs = []
 for _ in tqdm.tqdm(range(num_steps_to_profile - 1)):
        num_running_seqs = llm.llm_engine.scheduler[
 0].get_num_unfinished_seq_groups()
 with layerwise_profile(
                num_running_seqs=num_running_seqs) as decode_prof:
            llm.llm_engine.step()
        decode_profs.append(decode_prof)

    decode_results_list = [prof.results for prof in decode_profs]
    prefill_results = prefill_prof.results
    has_decode = len(decode_results_list) > 0

    LINE_WIDTH = 80
 print("=" * LINE_WIDTH)
 print(f"= Prefill Model Table "
 f"(prompt_len={prompt_len}, batch_size={batch_size})")
 print("=" * LINE_WIDTH)
 print()
    prefill_results.print_model_table()

 if has_decode:
 print()
 print("=" * LINE_WIDTH)
 print(f"= First Decode Step Model Table "
 f"(prompt_len={prompt_len}, batch_size={batch_size})")
 print("=" * LINE_WIDTH)
 print()
        decode_results_list[0].print_model_table()

 print()
 print("=" * LINE_WIDTH)
 print(f"= Prefill Summary Table "
 f"(prompt_len={prompt_len}, batch_size={batch_size})")
 print("=" * LINE_WIDTH)
 print()
    prefill_results.print_summary_table()

 if has_decode:
 print()
 print("=" * LINE_WIDTH)
 print(f"= First Decode Step Summary Table "
 f"(prompt_len={prompt_len}, batch_size={batch_size})")
 print("=" * LINE_WIDTH)
 print()
        decode_results_list[0].print_summary_table()

 if csv_output:
        csv_filename_base = csv_output[:-4] \
 if csv_output.endswith('.csv') else csv_output
        prefill_results.export_model_stats_table_csv(
            csv_filename_base + "_prefill_model_table.csv")
        prefill_results.export_summary_stats_table_csv(
            csv_filename_base + "_prefill_summary_table.csv")

 if has_decode:
            decode_results_list[0].export_model_stats_table_csv(\
                csv_filename_base + "_decode_model_table.csv")
            decode_results_list[0].export_summary_stats_table_csv(
                csv_filename_base + "_decode_summary_table.csv")

 if json_output:
        cuda_devices = [
            torch.cuda.get_device_properties(dev_idx)
 for dev_idx in range(torch.cuda.device_count())
 ]

        json_dict = {
 "context": {
 "python_version": f"{sys.version}",
 "torch_version": f"{torch.__version__}",
 "torch_cuda_version": f"{torch.version.cuda}",
 "cuda_devices": f"{cuda_devices}",
 **asdict(context)
 },
 "prefill": prefill_results.convert_stats_to_dict(),
 }

 if has_decode:
 for idx, dr in enumerate(decode_results_list):
                json_dict[f"decode_{idx + 1}"] = dr.convert_stats_to_dict()

 # 如果尚不存在,则将.json 添加到 JSON_OUTPUT 文件名。
        json_output_file = json_output if json_output.endswith(
 '.json') else json_output + '.json'
 with open(json_output_file, "w+") as f:
            json.dump(json_dict, f, indent=2)
 pass

 if context.save_chrome_traces_folder is not None:
        os.makedirs(context.save_chrome_traces_folder, exist_ok=True)
        prefill_prof.profiler.export_chrome_trace(
            context.save_chrome_traces_folder + "/prefill.json")
 for idx, decode_prof in enumerate(decode_profs):
            decode_prof.profiler.export_chrome_trace(
                context.save_chrome_traces_folder + f"/decode_{idx + 1}.json")
 print("Traces saved as prefill.json and decode_1.json, etc."
 f" in folder {context.save_chrome_traces_folder}")


if __name__ == "__main__":
    parser = FlexibleArgumentParser(description="""
Profile a model

    example:
    ```
    python examples/offline_inference/profiling.py \
        --model neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8 --batch-size 4 \
        --prompt-len 512 --max-num-batched-tokens 8196 --json Llama31-8b-FP8 \
        --enforce-eager run_num_steps -n 2
    ```

    then you can use various tools to analyze the json output
    terminal ascii tables:
        ```
        python tools/profiler/print_layerwise_table.py \
            --json-trace Llama31-8b-FP8.json --phase prefill --table summary
        ```
    or create matplotlib stacked bar charts:
        ```
        python tools/profiler/visualize_layerwise_profile.py \
            --json-trace Llama31-8b-FP8.json \
            --output-directory profile_breakdown --plot-metric pct_cuda_time
        ```
""",
formatter_class=RawTextHelpFormatter)
parser.add_argument(
"--csv",
type=str,
default=None,
help="Export the results as multiple csv file. This should be the root "
"filename, will create <filename>_prefill_model_table.csv, "
"<filename>_prefill_summary_table.csv, "
"<filename>_decode_model_table.csv, and "
"<filename>_decode_summary_table.csv")
parser.add_argument(
"--json",
type=str,
default=None,
help="Export the results as a json file. This should be the filename")
parser.add_argument("--save-chrome-traces-folder",
type=str,
help="Save chrome traces for the prefill and decode "
"will save traces as prefill.json and decode_1.json, "
"etc. inside this folder")
parser.add_argument(
"--prompt-len",
type=int,
default=PROMPT_LEN_DEFAULT,
help=f"Length of the random prompt to use when profiling, all batched "
f"requests use the same prompt_len, default={PROMPT_LEN_DEFAULT}")
parser.add_argument("--batch-size",
type=int,
default=BATCH_SIZE_DEFAULT,
help=f"Number of requests to run as a single batch, "
f"default={BATCH_SIZE_DEFAULT}")
subparsers = parser.add_subparsers(dest="cmd")
run_num_steps_parser = subparsers.add_parser(
"run_num_steps",
help="This variation profiles n engine.step() invocations.")
run_num_steps_parser.add_argument(
'-n',
'--num-steps',
type=int,
help="Number of engine steps to profile.\n"
"Setting it to 1, profiles only the prefill step.\n"
"Setting it to 2, profiles the prefill and first decode step\n"
"Setting it to 3, profiles the prefill, 1st and 2nd decode steps\n"
"and so on ...")
run_to_completion_parser = subparsers.add_parser(
"run_to_completion",
help="This variation profiles all the engine.step() invocations"
"until the engine exhausts all submitted requests.")
run_to_completion_parser.add_argument(
'-n',
'--complete-num-requests-per-step',
type=int,
help=
"Complete complete_num_requests_per_step requests every decode step."
"For e.g., with batch_size 128 and complete_num_requests_per_step 32,"
"the profiler is run for 6 engine steps, with the steps processing, "
"128, 128, 96, 64, 32, 1 requests respectively.\n"
"Note that we tack-on a one-request step at the end as it is often "
"useful.")
EngineArgs.add_cli_args(parser)
args = parser.parse_args()
context = ProfileContext(
engine_args=EngineArgs.from_cli_args(args),
**{
k: v
for k, v in vars(args).items()
if k in inspect.signature(ProfileContext).parameters
})
run_profile(context, csv_output=args.csv, json_output=args.json)
相关推荐
好好学习天天向上~~13 小时前
6_Linux学习总结_自动化构建
linux·学习·自动化
恣逍信点13 小时前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
晚霞的不甘13 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
小程故事多_8013 小时前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc
陈天伟教授13 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
人机与认知实验室13 小时前
一些容易被人工智能取代的职业
人工智能
茶栀(*´I`*)14 小时前
【NLP入门笔记】:自然语言处理基础与文本预处理
人工智能·自然语言处理·nlp
却道天凉_好个秋14 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
Lun3866buzha14 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
藦卡机器人14 小时前
国产机械臂做的比较好的品牌有哪些?
大数据·数据库·人工智能