【一文理解】下采样与上采样区别

目录

下采样

上采样

注意


下采样

原理

对图像进行1/n下采样,原图像分辨率为H*W,下采样分辨率变为(H/n)*(W/n)

作用

  • 压缩Feature Map
  • 降维减少提取特征
  • 降低模型计算量
  • 避免模型过拟合

本质

过滤无关信息,保留关键信息

方法

主要通过是池化层或卷积层进行下采样

  • 采用stride为2的池化层,如Max-pooling和Average-pooling
  • 采用stride为2的卷积层,下采样是信息损失过程,用stride为2的可学习卷积层来代替不可学习的卷积层可以得到更好的效果,但会增加模型复杂度和计算量

上采样

原理

对图像进行n上采样,原图像分辨率为H*W,下采样分辨率变为(nH)*(nW)

作用

  • 放大Feature Map
  • 升维增加图像分辨

本质

反向提取特征,还原关键信息

方法

  • 双线性插值
  • 转置卷积

转置卷积是卷积的一种,可使图片恢复成卷积前的尺寸,但是对应像素点的数值改变。

工作流程:

  1. 在输入特征图元素间填充s-1行、列0,s表示转置卷积的步距(步距不等于步长)
  2. 在输入特征图四周填充k-p-1行、列0,k=kernel_size,p=padding
  3. 卷积核参数上下、左右翻转
  4. 做正常卷积运算(填充0,步距1)

注意

上采样不是下采样的逆操作

相关推荐
工藤学编程16 小时前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生16 小时前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域16 小时前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序
yugi98783816 小时前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
aigcapi16 小时前
AI搜索排名提升:GEO优化如何成为企业增长新引擎
人工智能
彼岸花开了吗16 小时前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
MM_MS16 小时前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
韩师傅16 小时前
前端开发消亡史:AI也无法掩盖没有设计创造力的真相
前端·人工智能·后端
AI大佬的小弟16 小时前
【小白第一课】大模型基础知识(1)---大模型到底是啥?
人工智能·自然语言处理·开源·大模型基础·大模型分类·什么是大模型·国内外主流大模型
lambo mercy16 小时前
无监督学习
人工智能·深度学习