【一文理解】下采样与上采样区别

目录

下采样

上采样

注意


下采样

原理

对图像进行1/n下采样,原图像分辨率为H*W,下采样分辨率变为(H/n)*(W/n)

作用

  • 压缩Feature Map
  • 降维减少提取特征
  • 降低模型计算量
  • 避免模型过拟合

本质

过滤无关信息,保留关键信息

方法

主要通过是池化层或卷积层进行下采样

  • 采用stride为2的池化层,如Max-pooling和Average-pooling
  • 采用stride为2的卷积层,下采样是信息损失过程,用stride为2的可学习卷积层来代替不可学习的卷积层可以得到更好的效果,但会增加模型复杂度和计算量

上采样

原理

对图像进行n上采样,原图像分辨率为H*W,下采样分辨率变为(nH)*(nW)

作用

  • 放大Feature Map
  • 升维增加图像分辨

本质

反向提取特征,还原关键信息

方法

  • 双线性插值
  • 转置卷积

转置卷积是卷积的一种,可使图片恢复成卷积前的尺寸,但是对应像素点的数值改变。

工作流程:

  1. 在输入特征图元素间填充s-1行、列0,s表示转置卷积的步距(步距不等于步长)
  2. 在输入特征图四周填充k-p-1行、列0,k=kernel_size,p=padding
  3. 卷积核参数上下、左右翻转
  4. 做正常卷积运算(填充0,步距1)

注意

上采样不是下采样的逆操作

相关推荐
新智元5 小时前
马斯克「世界模拟器」首曝,1 天蒸馏人类 500 年驾驶经验!擎天柱同脑进化
人工智能·openai
新智元5 小时前
LeCun 怒揭机器人最大骗局,坦白 Llama 与我无瓜!
人工智能·openai
俞凡5 小时前
10 分钟搞定神经网络
人工智能
北极的树5 小时前
Claude Agent SDK实战:打造开源版DeepWiki
人工智能
哥布林学者5 小时前
吴恩达深度学习课程一:神经网络和深度学习 第四周:深层神经网络的关键概念 课后作业和代码实践
深度学习·ai
JJJJ_iii6 小时前
【机器学习08】模型评估与选择、偏差与方差、学习曲线
人工智能·笔记·python·深度学习·学习·机器学习
phoenix@Capricornus6 小时前
样本与样本值
人工智能·机器学习·概率论
讲师-汪春波6 小时前
【无标题】
人工智能
RockHopper20256 小时前
利用数字孪生技术打造智能工厂的“情境认知”能力
人工智能·智能制造·数字孪生·智能工厂
喵叔哟6 小时前
8. 从0到上线:.NET 8 + ML.NET LTR 智能类目匹配实战--规则回退与可解释性:四层策略如何兜底
人工智能·深度学习·.net