利用径向柱图探索西班牙语学习数据

利用径向柱图探索西班牙语学习数据

python 复制代码
import matplotlib as mpl
import matplotlib.pyplot as plt 
from matplotlib.cm import ScalarMappable 
from matplotlib.lines import Line2D 
import matplotlib.patches as mpatches 
from matplotlib.patches import Patch
from textwrap import wrap

import numpy as np 
import pandas as pd 
from mpl_toolkits.axes_grid1.inset_locator import inset_axes 

数据探索

以下数据如果有需要的同学可关注公众号HsuHeinrich,回复【数据可视化】自动获取~

python 复制代码
df = pd.read_csv('https://raw.githubusercontent.com/holtzy/The-Python-Graph-Gallery/master/static/data/polar_data.csv')
df.head()

Country:国家地区

Continent:大陆

Students_in_mil:学习者人数(百万)

Natives_in_mil:母语人数(百万)

绘制径向柱图

python 复制代码
# 基本变量

# 颜色
COLORS = ['#914F76','#A2B9B6','tan','#4D6A67','#F9A03F','#5B2E48','#2B3B39']
cmap = mpl.colors.LinearSegmentedColormap.from_list("my color", COLORS, N=7)

# 颜色标准化
NUMBERS = df['Cont_code'].values
norm = mpl.colors.Normalize(vmin= NUMBERS.min(), vmax= NUMBERS.max())
COLORS = cmap(norm(NUMBERS))
python 复制代码
# 字体初始化
plt.rcParams.update({"font.family": "Times"}) # 默认字体
plt.rcParams["text.color"] = "#1f1f1f" # 默认字体颜色
plt.rc("axes", unicode_minus=False) # 处理减号在特殊字体不可用的情况,禁用并改为连字符

# 初始化布局
fig, ax = plt.subplots(figsize=(7, 12.6), subplot_kw={"projection": "polar"})

# 设置图形和周的背景色
fig.patch.set_facecolor("white")
ax.set_facecolor("white")

ax.set_theta_offset(1.2 * np.pi / 2) # 默认偏移量
ax.set_ylim(0, 45000000)
ax.set_yscale('symlog', linthresh=500000) # y轴对称对数缩放:绝对值小于linthresh,则使用线性缩放,否则使用对数缩放

# 条形图
ANGLES = np.linspace(0.05, 2*np.pi - 0.05, len(df), endpoint = False)
LENGTHS = df['Students'].values
ax.bar(ANGLES, LENGTHS,
       color=COLORS, alpha=0.5,
       width=0.3, zorder=11,
       label='Spanish Learners')

# 添加虚线辅助参考各国家位置
ax.vlines(ANGLES, 0, 45000000, color="#1f1f1f", ls=(0, (4, 4)), zorder=11)

# 添加点表示母语西班牙语的人数
MEAN_GAIN = df['Natives'].values
ax.scatter(ANGLES, MEAN_GAIN, s=80, color= COLORS, zorder=11, label = 'Native Spanish Speakers')

# 添加Country的标签
REGION = ["\n".join(wrap(r, 5, break_long_words=False)) for r in df['Country'].values]

# 设置刻度位置、刻度标签
ax.set_xticks(ANGLES)
ax.set_xticklabels(REGION, size=12)
ax.set_yticks(np.arange(0,45000000,
                        step=5000000))

# 标题与副标题
plt.suptitle('Top Countries with Spanish Learners',
             size = 20, y = 0.95)
plt.title('And their Native Spanish Speaking Population',
          style = 'italic', size = 14, pad = 85)

# 添加参考线:1M~45M
PAD = 10
ax.text(-0.75 * np.pi / 2, 1000000 + PAD, "1M", ha="right", size=12)
ax.text(-0.75 * np.pi / 2, 5000000 + PAD, "5M", ha="right", size=11)
ax.text(-0.75 * np.pi / 2, 10000000 + PAD, "10M", ha="right", size=10)
ax.text(-0.75 * np.pi / 2, 20000000 + PAD, "20M ", ha="right", size=9)
ax.text(-0.75 * np.pi / 2, 30000000 + PAD, "30M ", ha="right", size=8)
ax.text(-0.75 * np.pi / 2, 46000000 + PAD, "45M ", ha="right", size=7)
XTICKS = ax.xaxis.get_major_ticks()
for tick in XTICKS:
    tick.set_pad(12)

# 添加来源信息
caption = "\n".join(["Created adapting a tutorial from Yan Holtz: https://python-graph-gallery.com/web-circular-barplot-with-matplotlib/",
                     "Data compiled from various sources including:",
                     "https://www.statista.com/statistics/991020/number-native-spanish-speakers-country-worldwide/",
                     "https://cvc.cervantes.es/lengua/espanol_lengua_viva/pdf/espanol_lengua_viva_2022.pdf",
                     "https://www.wordspath.com/spanish-speaking-countries-in-europe/#:~:text=More%20than%2084%20million%20people,them%20are%20native%20Spanish%20speakers."
])
fig.text(0, 0.1, caption, fontsize=10, ha="left", va="baseline")

# 调整底部布局
fig.subplots_adjust(bottom=0.175)

# 自定义图例
legend_elements = [Line2D([0], [0], marker='o', color='w', label='Native Spanish Speaking Population',
                          markerfacecolor='gray', markersize=12),
                          Line2D([0],[0] ,color = 'lightgray', lw = 3, label = 'Spanish Learners'),
                          mpatches.Patch(color='tan', label='North America', alpha = 0.8),
                          mpatches.Patch(color='#F9A03F', label='South America', alpha = 0.8),
                          mpatches.Patch(color='#2B3B39', label='West Europe', alpha = 0.8),
                          mpatches.Patch(color='#914F76', label='West Africa', alpha = 0.8),
                          mpatches.Patch(color='#914F76', label='Central Africa', alpha = 0.8),
                          mpatches.Patch(color='#4D6A67', label='North Europe', alpha = 0.8),
                          mpatches.Patch(color='#A2B9B6', label='East Europe', alpha = 0.8)]
ax.legend(handles=legend_elements,
          loc='upper right',
          bbox_to_anchor=(1.4, 1),
          fontsize = 'small')

plt.show()

参考:Polar chart with custom style and annotations

共勉~

相关推荐
shughui13 小时前
Python基础面试题:语言定位+数据类型+核心操作+算法实战(含代码实例)
开发语言·python·算法
No0d1es14 小时前
2025年12月电子学会青少年软件编程Python六级等级考试真题试卷
开发语言·python·青少年编程·等级考试·电子学会
Blossom.11814 小时前
Transformer架构优化实战:从MHA到MQA/GQA的显存革命
人工智能·python·深度学习·react.js·架构·aigc·transformer
溪海莘14 小时前
如何部署使用uv管理依赖的python项目 ?
开发语言·python·uv
我送炭你添花14 小时前
Python与串口:从基础到实际应用——以Pelco KBD300A模拟器项目为例
开发语言·python·自动化·运维开发
高洁0114 小时前
CLIP 的双编码器架构是如何优化图文关联的?(2)
python·深度学习·机器学习·知识图谱
m0_6265352014 小时前
快速排序学习 l方法 h方法
开发语言·python
FIT2CLOUD飞致云15 小时前
操作教程|DataEase企业总-分公司数据填报场景搭建实践
数据分析·开源·数据可视化·dataease·bi
brent42315 小时前
DAY49 预训练模型
python
清水白石00815 小时前
深入 Python 的底层世界:从 C 扩展到 ctypes 与 Cython 的本质差异全解析
c语言·python·neo4j