简单使用Marker

简单使用Marker

1 简单介绍

Marker是由Datalab维护的开源项目,它利用了surya的模型进行做的,能够快速准确地将文档转换为Markdown、JSON、分块数据及HTML格式。相对MinerU和Docling文件解析的效果较差,但是解析的速度是较快的,如果考虑速度和性能,可以考虑这个模型。不好的地方除了github没有官方本地部署较完整的文档。

Datalab也维护了Surya,Surya是一款文档OCR工具包,功能包括:支持90多种语言的OCR技术、任意语言的行级文本检测

版面分析(表格、图像、标题等检测)、阅读顺序检测、表格识别(检测行/列)、LaTeX OCR(数学公式)。

复制代码
# Github地址(没有标准的开发文档)
https://github.com/datalab-to/marker

# Surya的Github地址
https://github.com/datalab-to/surya

2 安装环境

安装依赖环境

复制代码
pip install marker-pdf[full] -i https://pypi.tuna.tsinghua.edu.cn/simple

简单例子

注意:Windows中模型的默认下载路径是"C:\Users\Admin\AppData\Local\datalab",Admin是我的用户名,此处对应你的用户名。模型大小:4.97G。

复制代码
# 注意!! 解析的过程不支持多线程和多协程
from marker.converters.pdf import PdfConverter
from marker.models import create_model_dict
from marker.output import text_from_rendered


def test():
    print(create_model_dict())
    converter = PdfConverter(
        artifact_dict=create_model_dict()
    )

    # 解析图片
    rendered = converter("E:/temp/test.png")
    text, _, images = text_from_rendered(rendered)
    print(text, _, images)

    # 解析pdf
    rendered = converter("E:/test/test1.pdf")
    text, _, images = text_from_rendered(rendered)
    print(text, _, images)

    # 解析docx
    rendered = converter("E:/test/test2.docx")
    text, _, images = text_from_rendered(rendered)
    print(text, _, images)


if __name__ == '__main__':
    test()

截图

相关推荐
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
智航GIS6 小时前
10.4 Selenium:Web 自动化测试框架
前端·python·selenium·测试工具
jarreyer6 小时前
摄像头相关记录
python
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
大、男人6 小时前
python之asynccontextmanager学习
开发语言·python·学习
默默前行的虫虫7 小时前
nicegui文件上传归纳
python
一个没有本领的人7 小时前
UIU-Net运行记录
python
国强_dev7 小时前
Python 的“非直接原因”报错
开发语言·python
副露のmagic8 小时前
更弱智的算法学习 day24
python·学习·算法
廖圣平8 小时前
从零开始,福袋直播间脚本研究【三】《多进程执行selenium》
python·selenium·测试工具