ML.NET机器学习框架基本流程介绍

给大家分享一个.NET开源、免费、跨平台(支持Windows、Linux、macOS多个操作系统)的机器学习框架:ML.NET。并且本文将会带你快速使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类。

ML.NET框架介绍

ML.NET 允许开发人员在其 .NET 应用程序中轻松构建、训练、部署和使用自定义模型,而无需具备开发机器学习模型的专业知识或使用 Python 或 R 等其他编程语言的经验。该框架提供从文件和数据加载的数据。数据库,支持数据转换,并包含许多机器学习算法。

AI和机器学习有什么区别?

AI 是一个计算分支,涉及训练计算机执行通常需要人类智能的操作。机器学习是 AI 的一部分,它涉及计算机从数据中学习和在数据中发现模式,以便能够自行对新数据进行预测。

ML.NET支持的.NET框架

目前ML.NET支持.NET、.NET Core (版本 2.0 及更高版本)和 .NET Framework (版本 4.6.1 及更高版本)。

框架源代码

ML.NET官方提供的使用示例

ML.NET使用环境安装

安装本机.NET环境

首先需要准备好本机的.NET开发环境:

Visual Studio环境配置

选择.NET 桌面开发工作负荷以及可选的 ML.NET Model Builder 组件。

ML.NET Model Builder 组件介绍:提供易于理解的可视界面,用于在 Visual Studio 内生成、训练和部署自定义机器学习模型。

一、使用Visual Studio的Model Builder训练和使用模型

Visual Studio默认安装了Model Builder插件,可以很快地进行一些通用模型类型的训练和部署,提高接入机器学习的开发效率

1.1、新建模型

通过非常简单地 右键项目-添加-机器学习模型

1.2、选择模型

ModelBuilder中提供了集中常用的模型类型以供开发者使用,开发者可以通过这些类别的模型快速接入,并且训练自己的数据,本节内容将会使用计算机视觉中的"图像分类"进行演示

1.3、选择训练环境

接下来要选择训练的环境,提供了CPU/GPU/Azure云三种方式训练,这里为了简单演示,我使用了CPU训练,如果数据量大且复杂的请选择GPU,并且提前安装CUDA、cuDNN

1.4、添加训练数据

我从搜索引擎中,搜集到了一系列"奥特曼"的图片(我相信不是所有人都可以认出各个时代的各个奥特曼 哈哈哈)

然后将这些图片进行了文件夹分类,导入到ModelBuilder中,如下:

然后开始训练
最后评估

基本是这样一个流程。

相关推荐
aihuangwu5 小时前
如何把豆包的回答导出
人工智能·ai·deepseek·ds随心转
好奇龙猫5 小时前
【人工智能学习-AI入试相关题目练习-第十六次】
人工智能·学习
bing.shao5 小时前
Golang 开发者视角:解读《“人工智能 + 制造” 专项行动》的技术落地机遇
人工智能·golang·制造
LOnghas12115 小时前
玉米目标检测实战:基于YOLO13-C3k2-RFAConv的优化方案_1
人工智能·目标检测·计算机视觉
量子-Alex5 小时前
【大模型课程笔记】斯坦福大学CS336 课程环境配置与讲座生成完整指南
人工智能·笔记
冬奇Lab5 小时前
一天一个开源项目(第9篇):NexaSDK - 跨平台设备端 AI 运行时,让前沿模型在本地运行
人工智能·开源
量子-Alex5 小时前
【大模型技术报告】Qwen2-VL大模型训练过程理解
人工智能
java1234_小锋5 小时前
【AI大模型舆情分析】微博舆情分析可视化系统(pytorch2+基于BERT大模型训练微调+flask+pandas+echarts) 实战(上)
人工智能·flask·大模型·bert
新缸中之脑5 小时前
Imagerouter.io: 免费图像生成API
人工智能
MM_MS5 小时前
Halcon图像点运算、获取直方图、直方图均衡化
图像处理·人工智能·算法·目标检测·计算机视觉·c#·视觉检测