ML.NET机器学习框架基本流程介绍

给大家分享一个.NET开源、免费、跨平台(支持Windows、Linux、macOS多个操作系统)的机器学习框架:ML.NET。并且本文将会带你快速使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类。

ML.NET框架介绍

ML.NET 允许开发人员在其 .NET 应用程序中轻松构建、训练、部署和使用自定义模型,而无需具备开发机器学习模型的专业知识或使用 Python 或 R 等其他编程语言的经验。该框架提供从文件和数据加载的数据。数据库,支持数据转换,并包含许多机器学习算法。

AI和机器学习有什么区别?

AI 是一个计算分支,涉及训练计算机执行通常需要人类智能的操作。机器学习是 AI 的一部分,它涉及计算机从数据中学习和在数据中发现模式,以便能够自行对新数据进行预测。

ML.NET支持的.NET框架

目前ML.NET支持.NET、.NET Core (版本 2.0 及更高版本)和 .NET Framework (版本 4.6.1 及更高版本)。

框架源代码

ML.NET官方提供的使用示例

ML.NET使用环境安装

安装本机.NET环境

首先需要准备好本机的.NET开发环境:

Visual Studio环境配置

选择.NET 桌面开发工作负荷以及可选的 ML.NET Model Builder 组件。

ML.NET Model Builder 组件介绍:提供易于理解的可视界面,用于在 Visual Studio 内生成、训练和部署自定义机器学习模型。

一、使用Visual Studio的Model Builder训练和使用模型

Visual Studio默认安装了Model Builder插件,可以很快地进行一些通用模型类型的训练和部署,提高接入机器学习的开发效率

1.1、新建模型

通过非常简单地 右键项目-添加-机器学习模型

1.2、选择模型

ModelBuilder中提供了集中常用的模型类型以供开发者使用,开发者可以通过这些类别的模型快速接入,并且训练自己的数据,本节内容将会使用计算机视觉中的"图像分类"进行演示

1.3、选择训练环境

接下来要选择训练的环境,提供了CPU/GPU/Azure云三种方式训练,这里为了简单演示,我使用了CPU训练,如果数据量大且复杂的请选择GPU,并且提前安装CUDA、cuDNN

1.4、添加训练数据

我从搜索引擎中,搜集到了一系列"奥特曼"的图片(我相信不是所有人都可以认出各个时代的各个奥特曼 哈哈哈)

然后将这些图片进行了文件夹分类,导入到ModelBuilder中,如下:

然后开始训练
最后评估

基本是这样一个流程。

相关推荐
lili-felicity11 小时前
CANN优化LLaMA大语言模型推理:KV-Cache与FlashAttention深度实践
人工智能·语言模型·llama
程序猿追11 小时前
深度解码昇腾 AI 算力引擎:CANN Runtime 核心架构与技术演进
人工智能·架构
金融RPA机器人丨实在智能11 小时前
Android Studio开发App项目进入AI深水区:实在智能Agent引领无代码交互革命
android·人工智能·ai·android studio
lili-felicity11 小时前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
做人不要太理性11 小时前
CANN Runtime 运行时组件深度解析:任务下沉执行、异构内存规划与全栈维测诊断机制
人工智能·神经网络·魔珐星云
不爱学英文的码字机器11 小时前
破壁者:CANN ops-nn 仓库与昇腾 AI 算子优化的工程哲学
人工智能
向上的车轮11 小时前
为什么.NET(C#)转 Java 开发时常常在“吐槽”Java:checked exception
java·c#·.net
晚霞的不甘11 小时前
CANN 编译器深度解析:TBE 自定义算子开发实战
人工智能·架构·开源·音视频
愚公搬代码11 小时前
【愚公系列】《AI短视频创作一本通》016-AI短视频的生成(AI短视频运镜方法)
人工智能·音视频
哈__11 小时前
CANN内存管理与资源优化
人工智能·pytorch