机器学习使用GPU

使用GPU

使用下面的命令来查看GPU的状态

shell 复制代码
!nvidia-smi
代码 含义
Memory-Usage 内存使用量/总量
GPU-Util (运行时)GPU使用量
CUDA Version CUDA的版本, 需要对应版本的框架

使用GPU运算

张量
python 复制代码
import torch

torch.device('cpu')
torch.device('cuda') # 使用GPU
torch.device('cuda:1')  # 访问第一个GPU

查看有多少GPU

python 复制代码
torch.cuda.device_count()

测试GPU环境

python 复制代码
def try_gpu(i=0):
	if torch.cuda.device_count() >= i + 1:
		return torch.device(f'cuda:{i}')
	return torch.device('cpu')

def try_all_gpu():
	devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
	return devices if devices else [torch.device('cpu')]

查询张量所在的设备

python 复制代码
x = torch.tensor([1, 2, 3])
x.device # device(type='cpu')

存储在gpu

python 复制代码
X = torch.ones(2, 3, device=try_gpu())
X # tensor(..., device='cuda:0')

第二个GPU创建张量

python 复制代码
X = torch.ones(2, 3, device=try_gpu(1))
X # tensor(..., device='cuda:1')

计算X, Y, 需要确定在同一个GPU执行计算操作

python 复制代码
Z = X.cuda(1)
Z # tensor(..., device='cuda:1')

Z.cuda(1) is Z  # True, 如果已经在对应的GPU, 不会做任何改变和开销

如果将不同的层分散放在CPU和GPU, 计算时会造成很大开销和性能问题, 并且不易排查, 所以最开始初始化就建议使用一个环境, 不要来回COPY切换

神经网络

神经网络在GPU

python 复制代码
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

net(X)

确认模型参数存储在同一个GPU

python 复制代码
net[0].weight.data.device # device(type='cuda',index=0)
相关推荐
珠海西格电力3 分钟前
零碳园区边缘计算节点规划:数字底座的硬件部署与能耗控制方案
运维·人工智能·物联网·能源·边缘计算
臼犀7 分钟前
孩子,那不是说明书,那是祈祷文
人工智能·程序员·markdown
黑客思维者8 分钟前
《关于深入实施 “人工智能 +“ 行动的意见》深度解读
人工智能
Sui_Network9 分钟前
Mysten Labs 与不丹王国政府的创新与技术部携手探索离线区块链
大数据·人工智能·web3·去中心化·区块链
互联科技报11 分钟前
GEO优化工具、AI搜索引擎优化软件平台实测报告:四大平台深度体验与选型指南
大数据·人工智能·搜索引擎
山东小木14 分钟前
AI智能问数(ChatBI)开发框架&解决方案&相关产品
人工智能·chatbi·智能问数·jboltai·javaai·ai问数·ai生图表
free-elcmacom20 分钟前
机器学习高阶教程<5>当机器学习遇上运筹学:破解商业决策的“终极难题”
人工智能·python·机器学习
Lun3866buzha30 分钟前
大型铸件表面缺陷检测与分类_YOLO11-C2BRA应用实践
人工智能·分类·数据挖掘
递归尽头是星辰32 分钟前
AI 驱动的报表系统:从传统到智能的落地与演进
大数据·人工智能·大模型应用·spring ai·ai 报表·报表智能化
Wang ruoxi33 分钟前
基于最小二乘法的离散数据拟合
人工智能·算法·机器学习