机器学习使用GPU

使用GPU

使用下面的命令来查看GPU的状态

shell 复制代码
!nvidia-smi
代码 含义
Memory-Usage 内存使用量/总量
GPU-Util (运行时)GPU使用量
CUDA Version CUDA的版本, 需要对应版本的框架

使用GPU运算

张量
python 复制代码
import torch

torch.device('cpu')
torch.device('cuda') # 使用GPU
torch.device('cuda:1')  # 访问第一个GPU

查看有多少GPU

python 复制代码
torch.cuda.device_count()

测试GPU环境

python 复制代码
def try_gpu(i=0):
	if torch.cuda.device_count() >= i + 1:
		return torch.device(f'cuda:{i}')
	return torch.device('cpu')

def try_all_gpu():
	devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
	return devices if devices else [torch.device('cpu')]

查询张量所在的设备

python 复制代码
x = torch.tensor([1, 2, 3])
x.device # device(type='cpu')

存储在gpu

python 复制代码
X = torch.ones(2, 3, device=try_gpu())
X # tensor(..., device='cuda:0')

第二个GPU创建张量

python 复制代码
X = torch.ones(2, 3, device=try_gpu(1))
X # tensor(..., device='cuda:1')

计算X, Y, 需要确定在同一个GPU执行计算操作

python 复制代码
Z = X.cuda(1)
Z # tensor(..., device='cuda:1')

Z.cuda(1) is Z  # True, 如果已经在对应的GPU, 不会做任何改变和开销

如果将不同的层分散放在CPU和GPU, 计算时会造成很大开销和性能问题, 并且不易排查, 所以最开始初始化就建议使用一个环境, 不要来回COPY切换

神经网络

神经网络在GPU

python 复制代码
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

net(X)

确认模型参数存储在同一个GPU

python 复制代码
net[0].weight.data.device # device(type='cuda',index=0)
相关推荐
用户51914958484514 小时前
利用配置错误的IAM策略窃取云函数访问令牌[GCP]
人工智能·aigc
中杯可乐多加冰14 小时前
国产OCR模型荣登HF榜首——PaddleOCR-VL技术详解与多场景实测
人工智能
王国强200914 小时前
人工智能发展报告:技术进展与产业分析(Kimi生成)
人工智能
算家计算14 小时前
阿里最新开源!轻量级视觉模型Qwen3-VL-4B&8B-Instruct本地部署教程:小参数媲美顶尖模型
人工智能·开源
赋范大模型技术圈14 小时前
11G显存DPO强化学习微调实战
人工智能·强化学习
算家计算14 小时前
李飞飞最新成果RTFM世界模型震撼问世,单块GPU就能跑
人工智能·资讯
ARM+FPGA+AI工业主板定制专家14 小时前
Jetson AGX Orin+GMSL+AI视觉开发套件,支持自动驾驶,机器人,工业视觉等应用
人工智能·机器学习·fpga开发·机器人·自动驾驶
阿部多瑞 ABU14 小时前
技术报告:高仿真虚构内容对主流大模型的现实感幻觉测试
人工智能·经验分享·笔记·学习·ai写作
枯荷影14 小时前
2025 AI 工程化实战:从 0 到 1 搭一个可落地的 RAG 应用
人工智能