机器学习使用GPU

使用GPU

使用下面的命令来查看GPU的状态

shell 复制代码
!nvidia-smi
代码 含义
Memory-Usage 内存使用量/总量
GPU-Util (运行时)GPU使用量
CUDA Version CUDA的版本, 需要对应版本的框架

使用GPU运算

张量
python 复制代码
import torch

torch.device('cpu')
torch.device('cuda') # 使用GPU
torch.device('cuda:1')  # 访问第一个GPU

查看有多少GPU

python 复制代码
torch.cuda.device_count()

测试GPU环境

python 复制代码
def try_gpu(i=0):
	if torch.cuda.device_count() >= i + 1:
		return torch.device(f'cuda:{i}')
	return torch.device('cpu')

def try_all_gpu():
	devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
	return devices if devices else [torch.device('cpu')]

查询张量所在的设备

python 复制代码
x = torch.tensor([1, 2, 3])
x.device # device(type='cpu')

存储在gpu

python 复制代码
X = torch.ones(2, 3, device=try_gpu())
X # tensor(..., device='cuda:0')

第二个GPU创建张量

python 复制代码
X = torch.ones(2, 3, device=try_gpu(1))
X # tensor(..., device='cuda:1')

计算X, Y, 需要确定在同一个GPU执行计算操作

python 复制代码
Z = X.cuda(1)
Z # tensor(..., device='cuda:1')

Z.cuda(1) is Z  # True, 如果已经在对应的GPU, 不会做任何改变和开销

如果将不同的层分散放在CPU和GPU, 计算时会造成很大开销和性能问题, 并且不易排查, 所以最开始初始化就建议使用一个环境, 不要来回COPY切换

神经网络

神经网络在GPU

python 复制代码
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

net(X)

确认模型参数存储在同一个GPU

python 复制代码
net[0].weight.data.device # device(type='cuda',index=0)
相关推荐
极造数字19 小时前
从EMS看分布式能源发展:挑战与机遇并存
人工智能·分布式·物联网·信息可视化·能源·制造
深蓝电商API19 小时前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
算家计算20 小时前
视觉-文本压缩框架——Glyph本地部署教程,以视觉压缩重塑长上下文处理范式
人工智能
qzhqbb20 小时前
神经网络—— 人工神经网络
人工智能·深度学习·神经网络
磊磊落落20 小时前
Cursor 初体验:将 React 项目从 JavaScript 升级到 TypeScript
人工智能
算家计算20 小时前
小鹏机器人真假难分引全网热议!而这只是开始......
人工智能·机器人·资讯
百锦再20 小时前
第1章 Rust语言概述
java·开发语言·人工智能·python·rust·go·1024程序员节
说私域20 小时前
开源AI智能名片链动2+1模式S2B2C商城系统下消费点评的信任构建机制研究
人工智能·开源
Victory_orsh20 小时前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
长桥夜波20 小时前
机器学习日报10
人工智能·机器学习