环境:opencv4.10 显卡3060Ti
编译好后,测试代码
import cv2
from cv2 import cuda
cuda.printCudaDeviceInfo(0)


python opencv cuda测试代码
python
import cv2
import numpy as np
def main():
# Define method enum equivalent
MOG = 0
MOG2 = 1
# Select method
method = MOG
# Check CUDA device count
count = cv2.cuda.getCudaEnabledDeviceCount()
print(f"GPU Device Count : {count}")
# Create CUDA Stream
stream = cv2.cuda_Stream()
# Open video capture
cap = cv2.VideoCapture("nfs.mp4")
# Read first frame
ret, frame = cap.read()
if not ret:
print("Failed to read video")
return
# Create CUDA GpuMat
d_frame = cv2.cuda_GpuMat()
d_frame.upload(frame)
# Create background subtractor
if method == MOG:
bg_subtractor = cv2.cuda.createBackgroundSubtractorMOG()
else:
bg_subtractor = cv2.cuda.createBackgroundSubtractorMOG2()
# Create CUDA GpuMats
d_fgmask = cv2.cuda_GpuMat()
d_fgimg = cv2.cuda_GpuMat()
d_bgimg = cv2.cuda_GpuMat()
while True:
ret, frame = cap.read()
if not ret:
break
start = cv2.getTickCount()
try:
# Upload frame to GPU
d_frame.upload(frame)
# Update the model
if method == MOG:
d_fgmask = bg_subtractor.apply(d_frame, 0.01, stream)
else:
d_fgmask = bg_subtractor.apply(d_frame, learningRate=-1, stream=stream)
# Get background image
d_bgimg = bg_subtractor.getBackgroundImage(stream)
# Download mask for processing
fgmask = d_fgmask.download()
# Process mask on CPU (threshold)
_, fgmask = cv2.threshold(fgmask, 250, 255, cv2.THRESH_BINARY)
# Convert to 3 channels
fgmask_3ch = cv2.cvtColor(fgmask, cv2.COLOR_GRAY2BGR)
# Upload processed mask back to GPU
d_fgmask_3ch = cv2.cuda_GpuMat()
d_fgmask_3ch.upload(fgmask_3ch)
# Create output GPU Mat for foreground
d_fgimg = cv2.cuda_GpuMat(d_frame.size(), d_frame.type())
# Extract foreground using multiply
cv2.cuda.multiply(d_frame, d_fgmask_3ch, d_fgimg, 1.0/255.0, -1, stream)
# Synchronize CUDA Stream
stream.waitForCompletion()
# Download results from GPU
fgimg = d_fgimg.download()
bgimg = None if d_bgimg.empty() else d_bgimg.download()
# Calculate FPS
fps = cv2.getTickFrequency() / (cv2.getTickCount() - start)
cv2.putText(frame, f"FPS : {fps:.2f}", (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2, cv2.LINE_AA)
# Show results
cv2.imshow("image", frame)
cv2.imshow("foreground mask", fgmask)
cv2.imshow("foreground image", fgimg)
if bgimg is not None:
cv2.imshow("mean background image", bgimg)
except cv2.error as e:
print(f"OpenCV Error: {e}")
continue
# Check for ESC key
if cv2.waitKey(1) == 27:
break
# Clean up
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()
其实以上的python代码由以下的c++转换来的,如果想在c++环境中测试opencv gpu效果
c++代码
https://cloud.tencent.com/developer/article/1523416
cpp
#include <iostream>
#include <string>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/cudabgsegm.hpp"
#include "opencv2/video.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
using namespace cv::cuda;
enum Method
{
MOG,
MOG2,
};
int main(int argc, const char** argv)
{
Method m = MOG;
int count = cuda::getCudaEnabledDeviceCount();
printf("GPU Device Count : %d \n", count);
VideoCapture cap;
cap.open("D:/images/video/example_dsh.mp4");
Mat frame;
cap >> frame;
GpuMat d_frame(frame);
Ptr<BackgroundSubtractor> mog = cuda::createBackgroundSubtractorMOG();
Ptr<BackgroundSubtractor> mog2 = cuda::createBackgroundSubtractorMOG2();
GpuMat d_fgmask;
GpuMat d_fgimg;
GpuMat d_bgimg;
Mat fgmask;
Mat fgimg;
Mat bgimg;
switch (m)
{
case MOG:
mog->apply(d_frame, d_fgmask, 0.01);
break;
case MOG2:
mog2->apply(d_frame, d_fgmask);
break;
}
namedWindow("image", WINDOW_AUTOSIZE);
namedWindow("foreground mask", WINDOW_AUTOSIZE);
namedWindow("foreground image", WINDOW_AUTOSIZE);
namedWindow("mean background image", WINDOW_AUTOSIZE);
for (;;)
{
cap >> frame;
if (frame.empty())
break;
int64 start = cv::getTickCount();
d_frame.upload(frame);
//update the model
switch (m)
{
case MOG:
mog->apply(d_frame, d_fgmask, 0.01);
mog->getBackgroundImage(d_bgimg);
break;
case MOG2:
mog2->apply(d_frame, d_fgmask);
mog2->getBackgroundImage(d_bgimg);
break;
}
d_fgimg.create(d_frame.size(), d_frame.type());
d_fgimg.setTo(Scalar::all(0));
d_frame.copyTo(d_fgimg, d_fgmask);
d_fgmask.download(fgmask);
d_fgimg.download(fgimg);
if (!d_bgimg.empty())
d_bgimg.download(bgimg);
imshow("foreground mask", fgmask);
imshow("foreground image", fgimg);
if (!bgimg.empty())
imshow("mean background image", bgimg);
double fps = cv::getTickFrequency() / (cv::getTickCount() - start);
// std::cout << "FPS : " << fps << std::endl;
putText(frame, format("FPS : %.2f", fps), Point(50, 50), FONT_HERSHEY_SIMPLEX, 1.0, Scalar(0, 0, 255), 2, 8);
imshow("image", frame);
char key = (char)waitKey(1);
if (key == 27)
break;
}
return 0;
}