PyTorch 软件包包含了用于多维张量的数据结构,并定义了在这些张量上执行的数学运算。此外,它还提供了许多实用工具,用于高效地序列化张量和任意类型的数据,以及其他有用的工具。
它还有一个 CUDA 版本,可以让你在计算能力 >= 3.0 的 NVIDIA GPU 上运行张量计算。
1. torch API 手册

2. Tensor 创建

3. Tensor 操作

4. 数学运算

5. 随机数生成

6. 线性代数

7. 设备管理

python
import torch
# 创建张量
x = torch.tensor([1, 2, 3])
y = torch.zeros(2, 3)
# 数学运算
z = torch.add(x, 1) # 逐元素加 1
print(z)
# 索引和切片
mask = x > 1
selected = torch.masked_select(x, mask)
print(selected)
# 设备管理
if torch.cuda.is_available():
device = torch.device('cuda')
x = x.to(device)
print(x.device)