Mamba与UNet融合的创新架构方向

  1. 多域变换Mamba编码器

基于最新的MTMU架构,我们探索了在编码器阶段引入多域特征提取机制,涵盖频域、小波域与空间域,每个域由专用Mamba模块处理,并通过跨域融合机制实现信息整合。该方法在医学图像分割任务中取得约8%的性能提升,其关键在于设计有效的跨域交互机制,避免各分支孤立运行,确保多域特征的协同增强。

  1. KAN增强的线性注意力Mamba

受VMKLA-UNet启发,我们将KOL(Kolmogorov--Arnold Network)中的可学习激活函数引入Mamba的线性注意力机制,替代传统固定激活函数,使模型能自适应不同类型医学图像的特征分布。该改进在皮肤病变、脑肿瘤等边界不规则病灶的分割任务中表现优异,在比传统Transformer-UNet降低60%计算量的同时,分割精度获得进一步提升。

  1. 图神经网络增强的Mamba-UNet(GM-UNet)

为克服Mamba在复杂拓扑结构建模中的局限性,我们在UNet瓶颈层引入图卷积模块,将像素关系建模为图结构,并采用图Mamba处理全局依赖。该架构在血管分割、神经纤维追踪等需理解复杂连接关系的任务中表现突出,在保持Mamba高效性的基础上,显著提升了对结构关系的建模能力。

  1. 高阶视觉Mamba架构(H-vmunet)

现有Mamba多停留于一阶建模,我们进一步提出递归高阶Mamba模块,使当前状态不仅依赖前一时刻,还融合前多个时刻的组合信息。该设计在参数仅增加30%的情况下,分割性能提升约15%,特别适用于需要复杂时空关系建模的3D医学图像分割任务。

相关推荐
小鸡吃米…4 分钟前
机器学习 - 感知机(Perceptron)
人工智能·python·机器学习
小鸡吃米…8 分钟前
机器学习 - 轮次(Epoch)
人工智能·深度学习·机器学习
风栖柳白杨19 分钟前
【语音识别】Qwen3-ASR原理及部署
人工智能·python·语音识别·xcode·audiolm
Wang2012201324 分钟前
2026流行的 AI Agent开发框架 (构建“智能体”)
人工智能
张人玉25 分钟前
VisionPro Blob、条码识别、OCR 结构化速记版
人工智能·算法·机器学习·vsionpro
Elastic 中国社区官方博客32 分钟前
Elasticsearch:使用 Elastic Workflows 构建自动化
大数据·数据库·人工智能·elasticsearch·搜索引擎·自动化·全文检索
跨境卫士-小汪36 分钟前
选品更稳的新打法:用“用户决策阻力”挑品——阻力越大,越有机会做出溢价
大数据·人工智能·产品运营·跨境电商·内容营销·跨境
小李独爱秋1 小时前
计算机网络经典问题透视:无线个人区域网WPAN的主要特点是什么?
计算机网络·网络安全·信息与通信·信号处理·wpan
空中楼阁,梦幻泡影1 小时前
主流4 大模型(GPT、LLaMA、DeepSeek、QWE)的训练与推理算力估算实例详细数据
人工智能·gpt·llama
Dev7z1 小时前
基于改进YOLOv5n与OpenVINO加速的课堂手机检测系统设计与实现
人工智能·yolo·openvino·手机检测·课堂手机检测