Mamba与UNet融合的创新架构方向

  1. 多域变换Mamba编码器

基于最新的MTMU架构,我们探索了在编码器阶段引入多域特征提取机制,涵盖频域、小波域与空间域,每个域由专用Mamba模块处理,并通过跨域融合机制实现信息整合。该方法在医学图像分割任务中取得约8%的性能提升,其关键在于设计有效的跨域交互机制,避免各分支孤立运行,确保多域特征的协同增强。

  1. KAN增强的线性注意力Mamba

受VMKLA-UNet启发,我们将KOL(Kolmogorov--Arnold Network)中的可学习激活函数引入Mamba的线性注意力机制,替代传统固定激活函数,使模型能自适应不同类型医学图像的特征分布。该改进在皮肤病变、脑肿瘤等边界不规则病灶的分割任务中表现优异,在比传统Transformer-UNet降低60%计算量的同时,分割精度获得进一步提升。

  1. 图神经网络增强的Mamba-UNet(GM-UNet)

为克服Mamba在复杂拓扑结构建模中的局限性,我们在UNet瓶颈层引入图卷积模块,将像素关系建模为图结构,并采用图Mamba处理全局依赖。该架构在血管分割、神经纤维追踪等需理解复杂连接关系的任务中表现突出,在保持Mamba高效性的基础上,显著提升了对结构关系的建模能力。

  1. 高阶视觉Mamba架构(H-vmunet)

现有Mamba多停留于一阶建模,我们进一步提出递归高阶Mamba模块,使当前状态不仅依赖前一时刻,还融合前多个时刻的组合信息。该设计在参数仅增加30%的情况下,分割性能提升约15%,特别适用于需要复杂时空关系建模的3D医学图像分割任务。

相关推荐
汤姆yu4 小时前
基于python大数据深度学习的酒店评论文本情感分析
开发语言·python·深度学习
遇雪长安4 小时前
深度学习YOLO实战:5、基于YOLO的自动化图像批量检测方案
人工智能·深度学习·yolo
浆果02074 小时前
【图像卷积基础】卷积过程&卷积实现通道扩充与压缩&池化Pooling原理和可视化
深度学习·神经网络·计算机视觉
xiaok4 小时前
dify绑定飞书多维表格工具使用
人工智能
piggy侠5 小时前
百度PaddleOCR-VL:基于0.9B超紧凑视觉语言模型,支持109种语言,性能超越GPT-4o等大模型
人工智能·算法·机器学习
xiaoxiaoxiaolll5 小时前
封面论文丨薄膜铌酸锂平台实现强耦合电光调制,《Light Sci. Appl. 》报道机器学习优化新范式
人工智能·学习
XiaoYu20025 小时前
AI精准提问手册:从模糊需求到精准输出的核心技能(上)
前端·人工智能·程序员
java_logo5 小时前
Docker 部署 MinerU 教程:打造你的本地 PDF 智能处理中心
linux·运维·人工智能·docker·ai·容器·aigc