Mamba与UNet融合的创新架构方向

  1. 多域变换Mamba编码器

基于最新的MTMU架构,我们探索了在编码器阶段引入多域特征提取机制,涵盖频域、小波域与空间域,每个域由专用Mamba模块处理,并通过跨域融合机制实现信息整合。该方法在医学图像分割任务中取得约8%的性能提升,其关键在于设计有效的跨域交互机制,避免各分支孤立运行,确保多域特征的协同增强。

  1. KAN增强的线性注意力Mamba

受VMKLA-UNet启发,我们将KOL(Kolmogorov--Arnold Network)中的可学习激活函数引入Mamba的线性注意力机制,替代传统固定激活函数,使模型能自适应不同类型医学图像的特征分布。该改进在皮肤病变、脑肿瘤等边界不规则病灶的分割任务中表现优异,在比传统Transformer-UNet降低60%计算量的同时,分割精度获得进一步提升。

  1. 图神经网络增强的Mamba-UNet(GM-UNet)

为克服Mamba在复杂拓扑结构建模中的局限性,我们在UNet瓶颈层引入图卷积模块,将像素关系建模为图结构,并采用图Mamba处理全局依赖。该架构在血管分割、神经纤维追踪等需理解复杂连接关系的任务中表现突出,在保持Mamba高效性的基础上,显著提升了对结构关系的建模能力。

  1. 高阶视觉Mamba架构(H-vmunet)

现有Mamba多停留于一阶建模,我们进一步提出递归高阶Mamba模块,使当前状态不仅依赖前一时刻,还融合前多个时刻的组合信息。该设计在参数仅增加30%的情况下,分割性能提升约15%,特别适用于需要复杂时空关系建模的3D医学图像分割任务。

相关推荐
智驱力人工智能35 分钟前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448739 分钟前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile39 分钟前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能57741 分钟前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥44 分钟前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty72544 分钟前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h1 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切1 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
数据与后端架构提升之路1 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿1 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能