量子计算与AI融合:材料科学新突破

1.深化学习理论基础:掌握薛定谔方程、DFT原理及交换-相关泛函的影响机制

2.熟练掌握计算技能:完成材料建模→结构优化→电子结构计算全流程,优化平面波基组参数

3.材料特征工程学习:构建二维材料拓扑/光谱特征,开发材料性能预测模型(如催化剂、硬度)

4.掌握神经网络机器学习融合方法:搭建CGCNN网络,实现分子动力学轨迹分析及材料属性预测

5.掌握综合应用实例:研究多物理场耦合(杨氏模量、热导率、超导材料)及缺陷体系(螺位错、薄膜生长)

6.掌握计算工具:Python(NumPy/Pandas/scikit-learn/tensor-flow)、pymatgen、机器与深度学习框架

相关推荐
好奇龙猫3 分钟前
【人工智能学习-AI入试相关题目练习-第三次】
人工智能
柳杉29 分钟前
建议收藏 | 2026年AI工具封神榜:从Sora到混元3D,生产力彻底爆发
前端·人工智能·后端
狮子座明仔29 分钟前
Engram:DeepSeek提出条件记忆模块,“查算分离“架构开启LLM稀疏性新维度
人工智能·深度学习·语言模型·自然语言处理·架构·记忆
阿湯哥38 分钟前
AgentScope Java 集成 Spring AI Alibaba Workflow 完整指南
java·人工智能·spring
Java中文社群1 小时前
保姆级喂饭教程:什么是Skills?如何用Skills?
人工智能
2301_800256111 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习
商业讯网12 小时前
国家电投海外项目运营经验丰富
大数据·人工智能·区块链
薛定谔的猫19822 小时前
llama-index Embedding 落地到 RAG 系统
开发语言·人工智能·python·llama-index
gorgeous(๑>؂<๑)2 小时前
【西北工业大学-邢颖慧组-AAAI26】YOLO-IOD:实时增量目标检测
人工智能·yolo·目标检测·计算机视觉·目标跟踪