神经网络中的 HWC→CHW 格式转换

在神经网络中,HWC 和 CHW 是两种常见的数据格式,

HWC 代表高度(Height)、宽度(Width)、通道(Channels)

CHW 则是通道在前,代表通道(Channels)、高度(Height)、宽度(Width)。

HWC→CHW 的转换在神经网络中具有重要意义,以下是相关介绍:

  • 转换原因
    • 框架设计要求 :许多深度学习框架,如 PyTorch,其卷积操作(如nn.Conv2d)要求输入张量的维度顺序为 CHW。如果输入数据是 HWC 格式,会引发维度不匹配错误。
    • 计算效率与内存优化:CHW 格式在内存中按通道连续存储,更符合卷积操作中 "跨通道特征融合" 的计算模式,减少内存跳跃访问带来的延迟。现代 GPU 和深度学习框架(如 cuDNN)针对 NCHW(批量大小、通道、高度、宽度)格式进行了深度优化,而 CHW 是 NCHW 在单张图像情况下的表现形式,所以将 HWC 转换为 CHW 有利于提高计算效率。
    • 与预训练模型兼容:大多数预训练模型(如 ResNet、VGG)的权重是基于 NCHW 格式数据训练的,输入数据需为 CHW 或 NCHW 格式,否则模型会无法正确计算。
  • 转换方法:可以使用维度置换函数来实现 HWC 到 CHW 的转换。

例如,在 Python 中使用 NumPy 库时,可以通过transpose函数进行转换,

image_chw = image_hwc.transpose(2, 0, 1)

在 PyTorch 中,可以使用permute函数,

image_chw = image_hwc.permute(2, 0, 1)

相关推荐
聆风吟º2 小时前
CANN ops-math 应用指南:从零搭建高效、可复用的自定义 AI 计算组件
人工智能·机器学习·cann
熊文豪2 小时前
从零开始:基于CANN ops-transformer的自定义算子开发指南
人工智能·深度学习·transformer·cann
云边有个稻草人2 小时前
基于CANN ops-nn的AIGC神经网络算子优化与落地实践
人工智能·神经网络·aigc
chian-ocean2 小时前
视觉新范式:基于 `ops-transformer` 的 Vision Transformer 高效部署
人工智能·深度学习·transformer
程序猿追2 小时前
探索 CANN Graph 引擎的计算图编译优化策略:深度技术解读
人工智能·目标跟踪
哈__2 小时前
CANN加速语音识别ASR推理:声学模型与语言模型融合优化
人工智能·语言模型·语音识别
程序猿追3 小时前
深度解读 CANN HCCL:揭秘昇腾高性能集体通信的同步机制
神经网络·架构
慢半拍iii3 小时前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
User_芊芊君子3 小时前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|3 小时前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶