神经网络中的 HWC→CHW 格式转换

在神经网络中,HWC 和 CHW 是两种常见的数据格式,

HWC 代表高度(Height)、宽度(Width)、通道(Channels)

CHW 则是通道在前,代表通道(Channels)、高度(Height)、宽度(Width)。

HWC→CHW 的转换在神经网络中具有重要意义,以下是相关介绍:

  • 转换原因
    • 框架设计要求 :许多深度学习框架,如 PyTorch,其卷积操作(如nn.Conv2d)要求输入张量的维度顺序为 CHW。如果输入数据是 HWC 格式,会引发维度不匹配错误。
    • 计算效率与内存优化:CHW 格式在内存中按通道连续存储,更符合卷积操作中 "跨通道特征融合" 的计算模式,减少内存跳跃访问带来的延迟。现代 GPU 和深度学习框架(如 cuDNN)针对 NCHW(批量大小、通道、高度、宽度)格式进行了深度优化,而 CHW 是 NCHW 在单张图像情况下的表现形式,所以将 HWC 转换为 CHW 有利于提高计算效率。
    • 与预训练模型兼容:大多数预训练模型(如 ResNet、VGG)的权重是基于 NCHW 格式数据训练的,输入数据需为 CHW 或 NCHW 格式,否则模型会无法正确计算。
  • 转换方法:可以使用维度置换函数来实现 HWC 到 CHW 的转换。

例如,在 Python 中使用 NumPy 库时,可以通过transpose函数进行转换,

image_chw = image_hwc.transpose(2, 0, 1)

在 PyTorch 中,可以使用permute函数,

image_chw = image_hwc.permute(2, 0, 1)

相关推荐
茶色岛^1 天前
解析CLIP:从“看标签”到“读描述”
人工智能·深度学习·机器学习
极客BIM工作室1 天前
Gemini 3 技术细节公布:架构、能力与未公开信息汇总
人工智能·机器学习
掘金一周1 天前
后台太多记不住?我做了一个统一门户把所有系统全串起来了| 掘金一周 12.4
人工智能·openai
shayudiandian1 天前
AI图像修复(Image Inpainting)实战案例
人工智能
普美瑞生物前沿1 天前
创新药物发现:基于机器学习的虚拟筛选发现新型CYP19A1抑制剂
人工智能·机器学习·虚拟筛选
All The Way North-1 天前
一文系统性理清PyTorch多分类任务交叉熵损失:从 Softmax 到 CrossEntropyLoss
人工智能·pytorch·深度学习·机器学习·交叉熵损失·多分类损失
Lau_way1 天前
AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection
人工智能·深度学习
zhaodiandiandian1 天前
生成式 AI:从技术狂欢到产业重构的价值革命
人工智能·重构
云雾J视界1 天前
敏捷实践组合破解芯片低功耗困局:迭代开发中如何精准控制功耗指标
人工智能·低功耗·敏捷实践·tdd·持续集成·软硬件协同·iot芯片
围炉聊科技1 天前
手机端侧智能助手:从被动工具到主动助手的进化之路
人工智能·智能手机