【手机篇】AI深度学习在手机摄像头模组支架外观检测应用方案

一、行业痛点

摄像头模组支架(Holder)是镜头、VCM、Sensor 的"骨架",正面、背面、Side、Wall 任意一面出现亮条纹、脏污、划伤、凹坑等微缺陷,都会引起光轴倾斜、成像暗角、对焦异响。传统 2D+显微镜抽检:

  • 漏检率 2%--4%,客户拆机投诉"亮点、条纹"频发;

  • 单颗 CT≈15 s,无法满足 600 UPH 高速贴片线;

  • 0.05 mm×0.05 mm 细微缺陷人工无法稳定识别。

二、技术方案

东声 Handdle AI 平台 + "自研光学成像"系统,一次完成正面-背面-Side-Wall 四大关键面零盲区检测。

1.光学成像

正面/背面:穹顶无影光 +,消除不锈钢高反光,亮条纹、亮点对比度↑3 倍;

Side 面:四侧条形光 + 高精度工业相机构成 360°侧拍,划伤、道具纹无遗漏;

Wall 面:同轴共焦 + 低角度环光,0.1 μm 级深度图,敏锐捕捉 0.05 mm×0.05 mm 凹坑、损坏;

高速飞拍:四轴机器人 + 高精度工业相机相机,整颗模组快速完成四面成像。

2.AI 双引擎

实例分割网络:像素级分割亮条纹、脏污、划伤、凹坑;

目标检测网络:毫秒级框选字符缺失、亮点、损坏;

传统算法:OCR 比对字符有无,传统算法计算亮条纹面积;

零漏检机制:在线困难样本自动回灌,模型日迭代。

3.一键换型

支架长宽高、颜色变更时,HanddleAl 自动调用新光学参数与 AI 模型,快速完成换型,0 代码。

三、检测内容(100% 在线四面包覆)

A. 正面

亮条纹、亮点(φ≥0.05 mm)

脏污、划伤、凹坑

字符有无、喷印不良

B. 背面

  1. 毛丝、异物、压伤

  2. 胶高异常(±10 μm)

C. Side 面

  1. 划伤、道具纹(宽≥0.05 mm)

  2. 卷边、缺料

D. Wall 面

  1. 损坏、崩缺(深≥0.05 mm)

  2. 颗粒、异色

四、方案价值

·零漏检 ·超高精度

·极速节拍:CT≤0.6 s,产能提升 10 倍。

·一键换型:2 分钟完成新支架切换,0 停机损失。

·数据闭环:缺陷图像实时上云,反向指导注塑、冲压、CNC 工艺,持续降本。

·投资回报:单台替代多名质检工,6 个月收回成本,已在全球 50 条高速贴片线复制运行。

Handdle AI 摄像头模组支架四面面检方案,以"零漏检 + 超高精度 + 急速节拍"重新定义手机摄像头支架零缺陷标准,为 3C 智能制造提供可复制、可扩展的质量基础设施。

相关推荐
dajun1811234561 天前
跨部门工作流泳道图在线绘制工具 PC
大数据·数据库·人工智能·信息可视化·架构·流程图
ba_pi1 天前
每天写点什么2026-01-10-深度学习和网络原理
网络·人工智能·深度学习
HZZD_HZZD1 天前
喜讯|合众致达成功中标G312线傅家窑至苦水公路机电工程FKJD-2标水电表项目
大数据·数据库·人工智能
paixingbang1 天前
GEO优化服务商领域崛起三强 自主技术驱动AI搜索与位置智能升级
大数据·人工智能
Luhui Dev1 天前
当模型“知道自己在作弊”:Scheming 与 Reward Hacking 的技术解剖
人工智能
AI数据皮皮侠1 天前
全球首个30米分辨率湿地数据集(2000—2022)
大数据·人工智能
SCBAiotAigc1 天前
langchain1.x学习笔记(三):langchain之init_chat_model的新用法
人工智能·python·langchain·langgraph·deepagents
Blossom.1181 天前
联邦迁移学习实战:在数据孤岛中构建个性化推荐模型
开发语言·人工智能·python·深度学习·神经网络·机器学习·迁移学习
Blossom.1181 天前
大模型自动化压缩:基于权重共享的超网神经架构搜索实战
运维·人工智能·python·算法·chatgpt·架构·自动化
水如烟1 天前
孤能子视角:“意识“的阶段性回顾,区分“分布式智能”与“意识孤能子”标准
人工智能