【DeepSeek-OCR系列第三篇】Pix2Struct:让视觉语言理解回归像素本身【ICML23】


📚 论文信息

  • 标题Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding

  • 作者:Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova

  • 单位:Google Research、succinctly.ai、University of Cambridge

  • 会议:ICML 2023

  • 🔗 GitHub 项目


一、问题背景:视觉与语言的"割裂"

当前的视觉-语言理解(Vision-Language Understanding)研究,大多基于图像与文本分开处理的范式。 但现实中,我们接触到的文本和视觉往往是交织在一起的,例如👇

  • 📄 含表格和图片的文档

  • 📊 图示和信息图

  • 📱 UI 界面

  • 🌐 网页内容

现有方法多依赖 OCR 管线特定领域工程 来拆解这种混合信息,例如:

  • 文档理解依赖外部 OCR;

  • UI 理解依赖平台特定 metadata;

  • 图表理解依赖图结构提取。

👉 这导致模型难以泛化,工程复杂、跨域能力弱,也难以构建统一的视觉语言理解框架。


二、方法创新:Pix2Struct = 截图 + HTML 解析

论文提出的 Pix2Struct 旨在彻底简化这一过程。 其核心思想是:

"只用像素输入 + 预训练解析网页结构,就能学到通用视觉语言能力。"

✳️ 核心技术路径

  1. 截图解析预训练(Screenshot Parsing)
  • 从网页抓取 截图 + HTML

  • 通过模型输入像素截图,输出 HTML 简化结构(类似图像转标记语言);

  • 自监督学习网页的布局与内容关系。

  • 可变分辨率输入

    • 改进 ViT 输入,支持灵活分辨率和长宽比;

    • 避免 OCR 模型常见的失真问题。

  • 文本直接渲染到图像上

    • 任务中的问题(如 VQA)直接绘制在图片上方;

    • 模型通过单一视觉通道理解所有信息,避免多模态对齐难题。

    📌 Pix2Struct 是一种 视觉编码 + 文本解码 架构。 与 T5 的"文本到文本"类似,它是 "像素到文本"的通用框架。


    三、实验结果:跨 4 大领域,9 项任务

    论文在四个视觉语言领域的九个基准上进行了系统测试:

    领域 任务示例 数据集
    Illustrations 图表/示意图问答 ChartQA, AI2D
    UI 组件识别、界面描述 RefExp, Widget Captioning
    Natural Images 图像问答、文字识别 TextCaps, OCR-VQA
    Documents 文档问答 DocVQA, InfographicVQA

    1. 对比 Donut 与 GIT2

    • Pix2Struct 在 9 个基准中 8 个优于 Donut

    • 并在 6 个任务上创下单模型 SOTA;

    • 相比 GIT2(12.9B 图文对),Pix2Struct 预训练数据更小,但跨域迁移更强。

    2. UI 与插图任务表现尤为突出

    • RefExp(UI组件定位)超过 UIBert;

    • Widget Captioning CIDEr 从 127.4 提升至 136.7;

    • Screen2Words 从 64.3 提升到 109.4。

    3. 文档与信息图任务表现

    • DocVQA ANLS 提升 9 分;

    • InfographicVQA 从 11.6 提升到 40。 👉 说明其对长宽比极端的图像也具有较强鲁棒性。


    四、优势与局限

    ✅ 优势

    • 统一像素输入,跨领域泛化能力强;

    • 训练目标简洁,自监督高效;

    • 可变分辨率机制适配真实场景;

    • 超越 OCR 管线,在 6/9 基准任务上达 SOTA。

    ⚠️ 局限

    • 语义理解深度与专用文本模型仍有差距;

    • 高分辨率训练成本高;

    • 对特定领域结构(如 PDF 元数据)不加利用时略有性能损失;

    • 暂不具备生成能力,仅限理解类任务。


    📝 一句话总结 : Pix2Struct 用"截图+像素解析"打破多模态割裂, 是迈向 通用视觉语言理解 的重要一步。

相关推荐
余俊晖1 小时前
文档图像旋转对VLM OCR的影响及基于Phi-3.5-Vision+分类头的文档方向分类器、及数据构建思路
人工智能·分类·ocr
翔云 OCR API2 小时前
NFC护照鉴伪查验流程解析-ICAO9303护照真伪查验接口技术方案
开发语言·人工智能·python·计算机视觉·ocr
大模型实验室Lab4AI3 小时前
【Github热门项目】DeepSeek-OCR项目上线即突破7k+星!突破10倍无损压缩,重新定义文本-视觉信息处理
人工智能·ocr·deepseek-ocr
AI人工智能+3 天前
从“海量文书”到“精准数据”:文档智能抽取重塑车险核心竞争力
nlp·ocr·文档抽取
Stara05113 天前
DeepSeek-OCR私有化部署—从零构建OCR服务环境
计算机视觉·docker·ocr·transformers·vllm·deepseek·光学符号识别
翔云 OCR API4 天前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
探模之翼4 天前
深度解读 DeepSeek-OCR 论文:通过视觉模态实现高效文本压缩
大模型·ocr·deepseek-ocr
paopao_wu4 天前
DeepSeek-OCR实战(06):SpringBoot应用接入
java·spring boot·ai·ocr·deepseek
paopao_wu4 天前
DeepSeek-OCR实战(05):DeepSeek-OCR-WebUI部署(Docker)
docker·ai·容器·ocr
OpenBayes4 天前
教程上新丨Deepseek-OCR 以极少视觉 token 数在端到端模型中实现 SOTA
人工智能·深度学习·机器学习·ocr·大语言模型·文本处理·deepseek