文档图像旋转对VLM OCR的影响及基于Phi-3.5-Vision+分类头的文档方向分类器、及数据构建思路

假设文档的存在方向旋转,那么会进一步的干扰VLM进行OCR的性能,下面看一个预处理方案,解决文档旋转干扰OCR问题,并进行一些评估,方法较为简单,快速看一下。

旋转分类任务定义:将文档旋转校正转化为四分类任务,覆盖最常见的四种旋转状态:

  • 类别0:-90°(逆时针旋转90°)
  • 类别1:0°(正立)
  • 类别2:90°(顺时针旋转90°)
  • 类别3:180°(倒置)

模型架构

视觉编码器

初始化Phi-3.5-Vision-Instruct的视觉编码器作为 backbone,该编码器基于CLIP ViT-L/14结构,具备强视觉特征提取能力,且参数量适中(整体模型约304M参数)。

动态裁剪策略

为解决单一图像输入难以兼顾"全局布局"和"局部文本细节"的问题,设计了多尺度裁剪方案:

  • 预处理步骤:先将输入图像(RGB格式,H×W×3)缩放、填充至"长和宽均能被336整除"的分辨率。
  • 裁剪生成:
    • 局部裁剪:将图像分割为不重叠的336×336补丁(最多16个),捕捉局部文本特征。
    • 全局裁剪:将整图缩放到336×336,保留全局布局信息。

这么做可以通过多视角输入提升模型对文本位置不均、边缘填充过多等复杂场景的鲁棒性。

分类头

既然是一个四分类任务,那么自然有基于特征的分类头。

  • 特征聚合:每个裁剪块经编码器输出序列后,提取首个位置的CLS token(全局特征表示,跟bert的分类类似),再对所有裁剪块的CLS token取平均,得到统一的图像表征。
  • 多层分类头:采用轻量前馈神经网络,结构为:
    1. 第一层:线性投影(维度从D→D/2,D为编码器输出维度1024)+ GELU激活 + 20% dropout(防过拟合)。
    2. 第二层:线性投影(维度从D/2→4),输出四分类logits。
  • 损失函数:Softmax交叉熵损失。

数据

训练数据:英文数据集(11K文档图像,含发票、合同等真实场景);11种印度语言数据集(38K图像,源自Wikisource

旋转增强:对训练数据均匀施加四种旋转变换,模拟真实的随机旋转场景。

性能

参考文献:Seeing Straight: Document Orientation Detection for Efficient OCR,https://arxiv.org/pdf/2511.04161v1

相关推荐
aircrushin2 小时前
三分钟说清楚 ReAct Agent 的技术实现
人工智能
技术狂人1683 小时前
工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
人工智能·算法·面试·职场和发展·vllm
好奇龙猫3 小时前
【人工智能学习-AI入试相关题目练习-第三次】
人工智能
柳杉3 小时前
建议收藏 | 2026年AI工具封神榜:从Sora到混元3D,生产力彻底爆发
前端·人工智能·后端
狮子座明仔3 小时前
Engram:DeepSeek提出条件记忆模块,“查算分离“架构开启LLM稀疏性新维度
人工智能·深度学习·语言模型·自然语言处理·架构·记忆
阿湯哥4 小时前
AgentScope Java 集成 Spring AI Alibaba Workflow 完整指南
java·人工智能·spring
Java中文社群4 小时前
保姆级喂饭教程:什么是Skills?如何用Skills?
人工智能
2301_800256114 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习
商业讯网15 小时前
国家电投海外项目运营经验丰富
大数据·人工智能·区块链