【基础复习3】决策树

概念

是一种分类和回归方法,是基于各种情况发生的所需条件构成决策树

问题是:当目标数据的特征较多时,构建的具有不同规则的决策树也相当庞大,那么该如何判断哪种决策树更好呢

一种思路是:如果按照某个特征对数据进行划分时,它能最大程度地将原本混乱的结果尽可能划分为几个有序的大类,则就应该先以这个特征为决策树中的根结点。接着,不断重复这一过程,直到整棵决策树被构建完成为止。

由此引入"熵"

熵(Entropy)是表示随机变量不确定性的度量。说简单点就是物体内部的混乱程度。

熵越大,混乱程度越大。

在决策树中,目标是在某个特征在被用于分类后,能最大程度地降低样本数据的熵。

划分选择

决定如何使得决策树各分支结点所包含的样本尽可能属于同一类别

信息增益

某特征 𝑋 使得整体的熵减少程度

例子:集合 𝐷 的熵 𝐻(𝐷) = 0.6931 ,特征 "天气"、"温度"、"风速"、"湿度" 的条件熵分别为 𝐻(D | X天气) = 0.3961 、𝐻(D | X温度) = 0.6931、𝐻(D | X风速) = 0.5983、𝐻(D | X湿度) = 0.6315。

应用:ID3 算法用此评估标准

信息增益率

信息增益 𝑔(𝐷, 𝑋) 与数据集 𝐷 在特征 𝑋 上值的熵 𝐻𝑋(𝐷) 之比,可以降低了 "偏向取值较多的特征" 这一影响

应用:C4.5 算法选用的评估标准

基尼系数

基尼系数评估了数据集的不纯度,其取值越小表示不纯度越低。

由于基尼系数Gini(D) 表示集合 D 的不确定性,则基尼系数Gini(D,X) 表示 "基于指定特征 X 进行划分后,集合 𝐷 的不确定性"。该值越大,就表示数据集 D 的不确定性越大,也就说明以该特征进行划分越容易分乱。

应用: CART(分类回归树) 算法选用的评估标准

决策树中的连续值处理

连续性数值如何转变成离散化

  1. 按某些属性分区(eg:温度的一个范围为一个区间)

  2. 对原数据进行排序,再取任意相邻值的中位点作为划分点

决策树中的预剪枝

将所有数据全部区分开会,导致决策树的过拟合风险非常大

  1. 限制树的深度

  2. 叶子结点个数

  3. 叶子结点含样本数

相关推荐
努力学算法的蒟蒻29 分钟前
day79(2.7)——leetcode面试经典150
算法·leetcode·职场和发展
2401_8414956433 分钟前
【LeetCode刷题】二叉树的层序遍历
数据结构·python·算法·leetcode·二叉树··队列
AC赳赳老秦35 分钟前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
2401_841495641 小时前
【LeetCode刷题】二叉树的直径
数据结构·python·算法·leetcode·二叉树··递归
budingxiaomoli1 小时前
优选算法-字符串
算法
qq7422349841 小时前
APS系统与OR-Tools完全指南:智能排产与优化算法实战解析
人工智能·算法·工业·aps·排程
A尘埃2 小时前
超市购物篮关联分析与货架优化(Apriori算法)
算法
.小墨迹2 小时前
apollo学习之借道超车的速度规划
linux·c++·学习·算法·ubuntu
不穿格子的程序员2 小时前
从零开始刷算法——贪心篇1:跳跃游戏1 + 跳跃游戏2
算法·游戏·贪心
大江东去浪淘尽千古风流人物2 小时前
【SLAM新范式】几何主导=》几何+学习+语义+高效表示的融合
深度学习·算法·slam