实战 Python NLP:处理 PDF 文档批量提取文本并进行主题建模

Python NLP实战:PDF文本批量提取与主题建模

1. PDF文本批量提取

核心工具

  • PyPDF2:基础PDF文本提取
  • pdfplumber:增强型文本/表格提取(推荐)
python 复制代码
import os
import pdfplumber

def extract_pdf_texts(folder_path):
    """批量提取PDF文件夹中的文本"""
    all_texts = []
    for filename in os.listdir(folder_path):
        if filename.endswith(".pdf"):
            with pdfplumber.open(os.path.join(folder_path, filename)) as pdf:
                text = ""
                for page in pdf.pages:
                    text += page.extract_text() + "\n"
                all_texts.append(text)
    return all_texts

# 使用示例
pdf_texts = extract_pdf_texts("/path/to/pdf_folder")
2. 文本预处理流程
python 复制代码
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer

nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')

def preprocess_text(text):
    """文本清洗与标准化"""
    # 1. 小写化 & 移除特殊字符
    text = re.sub(r'[^a-zA-Z\s]', '', text.lower())
    
    # 2. 分词
    words = nltk.word_tokenize(text)
    
    # 3. 移除停用词
    stop_words = set(stopwords.words('english'))
    words = [w for w in words if w not in stop_words and len(w) > 2]
    
    # 4. 词形还原
    lemmatizer = WordNetLemmatizer()
    return [lemmatizer.lemmatize(w) for w in words]

# 预处理所有文档
processed_docs = [preprocess_text(text) for text in pdf_texts]
3. 主题建模(LDA实现)
python 复制代码
from gensim import corpora, models

# 1. 创建词典与词袋
dictionary = corpora.Dictionary(processed_docs)
corpus = [dictionary.doc2bow(doc) for doc in processed_docs]

# 2. 训练LDA模型
lda_model = models.LdaModel(
    corpus=corpus,
    id2word=dictionary,
    num_topics=5,          # 主题数量
    passes=10,             # 训练轮次
    random_state=42
)

# 3. 可视化主题
def print_topics(model):
    for idx, topic in model.print_topics(-1):
        print(f"主题 {idx}: {topic}")

print_topics(lda_model)
4. 结果优化技巧
  1. 主题数选择

    python 复制代码
    # 使用一致性分数选择最优主题数
    from gensim.models import CoherenceModel
    coherence_scores = []
    for num_topics in range(3, 10):
        model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary)
        coherencemodel = CoherenceModel(model, texts=processed_docs, dictionary=dictionary, coherence='c_v')
        coherence_scores.append(coherencemodel.get_coherence())
  2. TF-IDF加权

    python 复制代码
    from gensim.models import TfidfModel
    tfidf = TfidfModel(corpus)
    corpus_tfidf = tfidf[corpus]
    lda_model_tfidf = models.LdaModel(corpus_tfidf, id2word=dictionary, num_topics=5)
5. 完整工作流示例
python 复制代码
# 1. 提取PDF文本
pdf_texts = extract_pdf_texts("research_papers")

# 2. 预处理
processed_docs = [preprocess_text(text) for text in pdf_texts]

# 3. 训练优化模型
dictionary = corpora.Dictionary(processed_docs)
corpus = [dictionary.doc2bow(doc) for doc in processed_docs]
tfidf = TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]

lda_model = models.LdaModel(
    corpus=corpus_tfidf,
    id2word=dictionary,
    num_topics=5,
    passes=15,
    alpha='auto'
)

# 4. 输出主题关键词
print_topics(lda_model)

输出示例

复制代码
主题 0: 0.025*"data" + 0.018*"learning" + 0.012*"model" + 0.009*"algorithm" + ...
主题 1: 0.031*"network" + 0.022*"neural" + 0.015*"deep" + 0.011*"layer" + ...
关键注意事项
  1. PDF提取质量

    • 扫描版PDF需先使用OCR工具(如Tesseract)处理
    • 表格密集文档使用pdfplumber.extract_table()
  2. NLP预处理

    • 领域特定停用词(如学术论文中的"figure", "table")
    • 保留专业名词(通过词性标注筛选名词)
  3. 模型调优

    • 主题数通过$$ \text{一致性分数} = \frac{1}{N}\sum_{i=1}^{N} \text{score}(t_i) $$优化
    • 超参数调整:alpha(文档-主题密度), eta(主题-词语密度)
  4. 替代方案

    python 复制代码
    # 使用BERTopic进行现代主题建模
    from bertopic import BERTopic
    topic_model = BERTopic(language="english")
    topics, _ = topic_model.fit_transform([" ".join(doc) for doc in processed_docs])
相关推荐
runepic21 小时前
Python 批量合并多个 Excel 数据(自动补 0 + 生成明细)
java·python·excel
ULTRA??21 小时前
排序算法之快排与TIMSORT的比较测试,python
c++·python·算法·golang
适应规律21 小时前
LWGANet:两大核心模块:TGFI(减空间冗余)和 LWGA(减通道冗余。
python·计算机视觉
自己的九又四分之三站台21 小时前
Make Me a Hanzi:开源汉字数据项目深度解析
python
非凡ghost21 小时前
FlexiPDF(专业PDF编辑软件)
windows·学习·pdf·软件需求
SunnyDays101121 小时前
使用 Python 冻结、取消冻结和拆分 Excel 窗格
python·excel·冻结窗格·冻结行和列·取消冻结窗格·拆分窗格
小白学大数据21 小时前
实时监控 1688 商品价格变化的爬虫系统实现
javascript·爬虫·python
Darkershadow21 小时前
Python学习之使用笔记本摄像头截屏
python·opencv·学习
ekprada21 小时前
Day 40 深度学习训练与测试的规范写法
人工智能·python
xinyu_Jina1 天前
PaperStudio:WYSIWYG文档的Web实现——从CSS Print到客户端PDF生成的技术解析
前端·css·pdf