大模型微调快速入门

目录

一、框架调研

二、搭建环境

三、准备数据集

四、开始训练


一、框架调研

|-------------------|--------------------------------------|------------|
| 工具 | 优势 | 典型场景 |
| Kiln | 零代码+协作功能 | 快速原型开发 |
| Unsloth | 训练加速+低显存需求 | 低成本微调大模型 |
| LLaMA-Factory | 可视化调参界面+多模型支持+多种训练方式 | 行业专用模型快速落地 |
| PEFT | 参数高效+资源节省 | 大规模模型轻量化适配 |
| transformers | Hugging Face生态完备+社区支持 | 从实验到生产全流程 |
| Axolotl | 支持多种数据集格式以及自定义格式 | |
| Firefly | 验证了 QLoRA 训练流程的有效性 | |
| XTuner | 支持多节点跨设备微调更大尺度模型 | |
| ms-swift | 支持450+大模型与150+多模态大模型的训练、推理、评测、量化与部署。 | |

这里选用微调工具为:**LLaMA-Factory。**除此上述优势外,开发者多,文档资料足,比较容易上手。

文档可参考:https://llamafactory.readthedocs.io/zh-cn/latest/getting_started/sft.html

二、搭建环境

LLaMA-Factory 的 Github地址:https://github.com/hiyouga/LLaMA-Factory

  • 创建 conda 虚拟环境(一定要 3.10 的 python 版本,不然和 LLaMA-Factory 不兼容)

    conda create -n llama-factory python=3.10

  • 激活虚拟环境

    conda activate llama-factory

  • 直接从源码安装

    git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
    cd LLaMA-Factory
    pip install -e ".[torch,metrics]" --no-build-isolation

  • 检验是否安装成功

    llamafactory-cli version

  • 启动 LLama-Factory 的可视化微调界面 (由 Gradio 驱动)

    llamafactory-cli webui

三、准备数据集

llamafactory会去找json文件,而数据集信息则保持在json文件中

一般来说,json取名为:dataset_info.json

微调指令中的对应字段为:--dataset_dir /data/thomascai/codes/LLaMA-Factory-0.9.3/datasets 下一层就是 dataset_info.json

如果图形化训练界面,则

data下会去搜索**dataset_info.json**文件。

这里以图像文本数据集为例:

  • **dataset_info.json**的内容

    {
    "dataset_name": {
    "file_name": "dataset_name.json",
    "formatting": "sharegpt",
    "columns": {
    "messages": "messages",
    "images": "images"
    },
    "tags": {
    "role_tag": "role",
    "content_tag": "content",
    "user_tag": "user",
    "assistant_tag": "assistant"
    }
    }
    }

  • 跟**dataset_info.json** 同级目录下则有 **dataset_name.json**文件

    [
    {
    "messages": [
    { "role": "user", "content": "<image>\n看这张图片,里面是什么?" },
    { "role": "assistant", "content": "这是一个矿泉水瓶。" }
    ],
    "images": [
    "images/img_0001.jpg"
    ]
    },
    {
    "messages": [
    { "role": "user", "content": "<image>\n请帮我识别这张图片中的物体。" },
    { "role": "assistant", "content": "是一瓶可乐。" }
    ],
    "images": [
    "images/img_0002.jpg"
    ]
    }
    ]

准备好数据集后,即可以开始训练。

四、开始训练

一般入门来说,图像化界面训练即可。

然后往下会生成损失曲线:

相关推荐
min1811234565 小时前
分公司组织架构图在线设计 总部分支管理模板
大数据·人工智能·信息可视化·架构·流程图
中冕—霍格沃兹软件开发测试5 小时前
边界值分析:功能测试中的精度利器
人工智能·功能测试·科技·测试工具·appium·bug
檐下翻书1735 小时前
量子计算 + AI:蛋白质折叠预测速度提升万倍,开启靶向药新纪元
人工智能
q_30238195566 小时前
香橙派赋能水稻病虫害精准识别:AI+边缘计算守护粮食安全
人工智能·边缘计算
古城小栈6 小时前
K3s + 边缘 AI:轻量级 K8s 在嵌入式设备的部署
人工智能·容器·kubernetes
weixin_416660076 小时前
豆包与DeepSeek底层大模型的深度解析:技术架构、设计理念与生态分野
人工智能·ai·架构·deepseek
itwangyang5206 小时前
AIDD-人工智能药物设计-扩散模型热力学:从 AI 提取物理能量
人工智能
ʜᴇɴʀʏ6 小时前
论文阅读 SAM 3: Segment Anything with Concepts
论文阅读·人工智能·目标检测·计算机视觉·目标跟踪
周杰伦_Jay6 小时前
【BGE-M3与主流RAG嵌入模型】知识库嵌入模型对比
人工智能·机器学习·eureka·开源·github
Gavin在路上6 小时前
AI学习之Anthropic的访谈者工具
人工智能·学习