【矩阵分析与应用】【第5章 梯度分析与最优化】【5.2.2 矩阵迹的微分计算示例d(tr(U))=tr(dU)证明】

矩阵迹的微分计算示例

引言

在矩阵分析中,迹(trace)运算的微分是一个基础而重要的概念。迹的微分在优化问题、机器学习中的梯度计算等领域有着广泛的应用。本文通过一个具体的例子来展示如何计算矩阵迹的微分。

矩阵迹的定义

对于一个 n × n n \times n n×n 的方阵 U = [ u i j ] U = [u_{ij}] U=[uij],其迹定义为对角线元素之和:
tr ⁡ ( U ) = ∑ i = 1 n u i i \operatorname{tr}(U) = \sum_{i=1}^n u_{ii} tr(U)=i=1∑nuii

迹的微分计算

考虑标量函数 tr ⁡ ( U ) \operatorname{tr}(U) tr(U) 的微分,其中 U U U 是一个矩阵函数。

计算过程

根据迹的定义和微分运算的线性性质,我们有:
d ( tr ⁡ U ) = d ( ∑ i = 1 n u i i ) = ∑ i = 1 n d u i i = tr ⁡ ( d U ) \begin{aligned} d(\operatorname{tr} U) &= d\left( \sum_{i=1}^n u_{ii} \right) \\ &= \sum_{i=1}^n du_{ii} \\ &= \operatorname{tr}(dU) \end{aligned} d(trU)=d(i=1∑nuii)=i=1∑nduii=tr(dU)

最终结果

因此,我们得到矩阵迹的微分公式:
d ( tr ⁡ U ) = tr ⁡ ( d U ) d(\operatorname{tr} U) = \operatorname{tr}(dU) d(trU)=tr(dU)

公式说明

这个结果表明:

  • 矩阵迹的微分等于矩阵微分的迹
  • 迹运算与微分运算可以交换顺序
  • 该公式在矩阵求导中非常有用,可以简化很多计算
相关推荐
短视频矩阵源码定制13 小时前
矩阵系统全面解析:构建智能营销体系的核心引擎
java·人工智能·矩阵·aigc·视频
知识搬运工人1 天前
传统卷积神经网络中的核心运算是卷积或者矩阵乘,请问transformer模型架构主要的计算
矩阵·cnn·transformer
前端炒粉2 天前
18.矩阵置零(原地算法)
javascript·线性代数·算法·矩阵
AI Chen3 天前
【矩阵分析与应用】【第1章 矩阵与线性方程组】【1.6.2.2 迹的循环置换性质】
矩阵·
大千AI助手3 天前
HOSVD(高阶奇异值分解):高维数据的“解剖术”
人工智能·线性代数·矩阵·张量·svd·hosvd·高阶奇异值分解
我想吃余3 天前
【0基础学算法】前缀和刷题日志(三):连续数组、矩阵区域和
算法·矩阵·哈希算法
西***63473 天前
从信号零损耗到智能协同:高清混合矩阵全链路技术拆解,分布式可视化系统十大趋势重塑行业
分布式·线性代数·矩阵
长颈鹿仙女4 天前
数学基础-线性代数(向量、矩阵、运算、范数、特征向量、特征值)
线性代数·机器学习·矩阵
救救孩子把4 天前
30-机器学习与大模型开发数学教程-3-4 矩阵的逆与伪逆
线性代数·机器学习·矩阵