【矩阵分析与应用】【第5章 梯度分析与最优化】【5.2.2 矩阵迹的微分计算示例d(tr(U))=tr(dU)证明】

矩阵迹的微分计算示例

引言

在矩阵分析中,迹(trace)运算的微分是一个基础而重要的概念。迹的微分在优化问题、机器学习中的梯度计算等领域有着广泛的应用。本文通过一个具体的例子来展示如何计算矩阵迹的微分。

矩阵迹的定义

对于一个 n × n n \times n n×n 的方阵 U = [ u i j ] U = [u_{ij}] U=[uij],其迹定义为对角线元素之和:
tr ⁡ ( U ) = ∑ i = 1 n u i i \operatorname{tr}(U) = \sum_{i=1}^n u_{ii} tr(U)=i=1∑nuii

迹的微分计算

考虑标量函数 tr ⁡ ( U ) \operatorname{tr}(U) tr(U) 的微分,其中 U U U 是一个矩阵函数。

计算过程

根据迹的定义和微分运算的线性性质,我们有:
d ( tr ⁡ U ) = d ( ∑ i = 1 n u i i ) = ∑ i = 1 n d u i i = tr ⁡ ( d U ) \begin{aligned} d(\operatorname{tr} U) &= d\left( \sum_{i=1}^n u_{ii} \right) \\ &= \sum_{i=1}^n du_{ii} \\ &= \operatorname{tr}(dU) \end{aligned} d(trU)=d(i=1∑nuii)=i=1∑nduii=tr(dU)

最终结果

因此,我们得到矩阵迹的微分公式:
d ( tr ⁡ U ) = tr ⁡ ( d U ) d(\operatorname{tr} U) = \operatorname{tr}(dU) d(trU)=tr(dU)

公式说明

这个结果表明:

  • 矩阵迹的微分等于矩阵微分的迹
  • 迹运算与微分运算可以交换顺序
  • 该公式在矩阵求导中非常有用,可以简化很多计算
相关推荐
愚公搬代码9 小时前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang12 小时前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott19851212 小时前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
victory04312 天前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
todoitbo2 天前
从零搭建鲲鹏 HPC 环境:从朴素矩阵乘法到高性能实现
线性代数·矩阵·鲲鹏·昇腾
lingzhilab2 天前
零知IDE——基于STMF103RBT6结合PAJ7620U2手势控制192位WS2812 RGB立方体矩阵
c++·stm32·矩阵
你要飞2 天前
Part 2 矩阵
笔记·线性代数·考研·矩阵
一条大祥脚2 天前
26.1.2 两个数的数位dp 分段快速幂 dp预处理矩阵系数
线性代数·矩阵
Dream it possible!3 天前
LeetCode 面试经典 150_二分查找_搜索二维矩阵(112_74_C++_中等)
leetcode·面试·矩阵
AI科技星3 天前
电磁耦合常数Z‘的第一性原理推导与严格验证:张祥前统一场论的几何基石
服务器·人工智能·线性代数·算法·矩阵