【矩阵分析与应用】【第5章 梯度分析与最优化】【5.2.2 矩阵迹的微分计算示例d(tr(U))=tr(dU)证明】

矩阵迹的微分计算示例

引言

在矩阵分析中,迹(trace)运算的微分是一个基础而重要的概念。迹的微分在优化问题、机器学习中的梯度计算等领域有着广泛的应用。本文通过一个具体的例子来展示如何计算矩阵迹的微分。

矩阵迹的定义

对于一个 n × n n \times n n×n 的方阵 U = [ u i j ] U = [u_{ij}] U=[uij],其迹定义为对角线元素之和:
tr ⁡ ( U ) = ∑ i = 1 n u i i \operatorname{tr}(U) = \sum_{i=1}^n u_{ii} tr(U)=i=1∑nuii

迹的微分计算

考虑标量函数 tr ⁡ ( U ) \operatorname{tr}(U) tr(U) 的微分,其中 U U U 是一个矩阵函数。

计算过程

根据迹的定义和微分运算的线性性质,我们有:
d ( tr ⁡ U ) = d ( ∑ i = 1 n u i i ) = ∑ i = 1 n d u i i = tr ⁡ ( d U ) \begin{aligned} d(\operatorname{tr} U) &= d\left( \sum_{i=1}^n u_{ii} \right) \\ &= \sum_{i=1}^n du_{ii} \\ &= \operatorname{tr}(dU) \end{aligned} d(trU)=d(i=1∑nuii)=i=1∑nduii=tr(dU)

最终结果

因此,我们得到矩阵迹的微分公式:
d ( tr ⁡ U ) = tr ⁡ ( d U ) d(\operatorname{tr} U) = \operatorname{tr}(dU) d(trU)=tr(dU)

公式说明

这个结果表明:

  • 矩阵迹的微分等于矩阵微分的迹
  • 迹运算与微分运算可以交换顺序
  • 该公式在矩阵求导中非常有用,可以简化很多计算
相关推荐
Olafur_zbj7 小时前
【AI】矩阵、向量与乘法
人工智能·线性代数·矩阵
啦啦啦在冲冲冲15 小时前
lora矩阵的初始化为啥B矩阵为0呢,为啥不是A呢
深度学习·机器学习·矩阵
西西弗Sisyphus2 天前
线性代数 - 矩阵的等价标准形
线性代数·矩阵·等价标准形
前端小L2 天前
图论专题(十七):从“判定”到“构造”——生成一份完美的「课程表 II」
算法·矩阵·深度优先·图论·宽度优先
冰西瓜6002 天前
模与内积(五)矩阵分析与应用 国科大
线性代数·算法·矩阵
AIminminHu2 天前
底层视觉及图像增强-项目实践理论补充(十六-0-(19):HDR多帧对齐中的关键帧对齐与变换矩阵插值技术):从奥运大屏,到手机小屏,快来挖一挖里面都有什么
线性代数·矩阵·多帧对齐·关键帧对齐·变换矩阵插值
西西弗Sisyphus4 天前
线性代数 - 叉积的分量形式与矩阵形式
线性代数·矩阵·行列式·determinant
CoderYanger4 天前
A.每日一题——2536. 子矩阵元素加 1
java·线性代数·算法·leetcode·矩阵
虹科测试测量5 天前
德思特干货 | 单通道、多通道衰减器与衰减矩阵:如何选择合适的衰减方案
服务器·测试工具·算法·矩阵