Formatting Outputs for ChatPrompt Templates(one)

https://python.langchain.com.cn/docs/modules/model_io/prompts/prompt_templates/format_output

The chat_prompt variable in LangChain is built by combining message templates (system messages, human messages, etc.) into a structured ChatPromptTemplate. Let's break down how it's constructed, using the exact example from the original source (translating English to French).

Step 1: Import Required Tools

First, import the necessary classes from LangChain to create chat prompts:

python 复制代码
from langchain.prompts.chat import (
    ChatPromptTemplate,          # To combine message templates
    SystemMessagePromptTemplate, # For system messages (AI's role)
    HumanMessagePromptTemplate   # For human/user messages (input)
)

Step 2: Define Message Templates

A chat_prompt typically includes two key parts:

  • A system message: Tells the AI its role/instructions.
  • A human message: The user's input (with placeholders for dynamic content).
Create the System Message Template

This defines the AI's task (e.g., "translate English to French"):

python 复制代码
# Template string for the system message
system_template = "You are a helpful assistant that translates {input_language} to {output_language}."

# Convert the string to a SystemMessagePromptTemplate
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)
  • {input_language} and {output_language} are placeholders (we'll fill them later).
Create the Human Message Template

This defines the user's input (the text to translate):

python 复制代码
# Template string for the human message
human_template = "{text}"  # {text} is a placeholder for the user's text

# Convert the string to a HumanMessagePromptTemplate
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

Step 3: Combine Templates into chat_prompt

Use ChatPromptTemplate.from_messages() to merge the system and human message templates into a single chat_prompt:

python 复制代码
# Combine the two message templates into a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([
    system_message_prompt,  # First: system instructions
    human_message_prompt    # Second: user input
])

Final Result: What chat_prompt Contains

The chat_prompt variable now holds a structured prompt that:

  1. Includes the system's role (translation task).
  2. Includes a placeholder for the user's text.
  3. Can be filled with actual values (e.g., input_language="English", text="I love programming") later using .format() or .format_prompt().

This exact structure matches the original source---no changes to code or logic. The chat_prompt is simply a container for combining message templates to guide the AI's behavior.

相关推荐
一切尽在,你来1 小时前
1.4 LangChain 1.2.7 核心架构概览
人工智能·langchain·ai编程
一切尽在,你来2 小时前
1.3 环境搭建
人工智能·ai·langchain·ai编程
蛇皮划水怪8 小时前
深入浅出LangChain4J
java·langchain·llm
、BeYourself10 小时前
LangChain4j 流式响应
langchain
、BeYourself10 小时前
LangChain4j之Chat and Language
langchain
qfljg12 小时前
langchain usage
langchain
lili-felicity13 小时前
#CANN AIGC文生图轻量推理:Prompt优化算子插件开发
prompt·aigc
猫头虎14 小时前
2026年AI产业13大趋势预测:Vibe Coding创作者经济元年到来,占冰强专家解读AIGC未来图景
人工智能·开源·prompt·aigc·ai编程·远程工作·agi
kjkdd16 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
Kiyra16 小时前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt