Formatting Outputs for ChatPrompt Templates(one)

https://python.langchain.com.cn/docs/modules/model_io/prompts/prompt_templates/format_output

The chat_prompt variable in LangChain is built by combining message templates (system messages, human messages, etc.) into a structured ChatPromptTemplate. Let's break down how it's constructed, using the exact example from the original source (translating English to French).

Step 1: Import Required Tools

First, import the necessary classes from LangChain to create chat prompts:

python 复制代码
from langchain.prompts.chat import (
    ChatPromptTemplate,          # To combine message templates
    SystemMessagePromptTemplate, # For system messages (AI's role)
    HumanMessagePromptTemplate   # For human/user messages (input)
)

Step 2: Define Message Templates

A chat_prompt typically includes two key parts:

  • A system message: Tells the AI its role/instructions.
  • A human message: The user's input (with placeholders for dynamic content).
Create the System Message Template

This defines the AI's task (e.g., "translate English to French"):

python 复制代码
# Template string for the system message
system_template = "You are a helpful assistant that translates {input_language} to {output_language}."

# Convert the string to a SystemMessagePromptTemplate
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)
  • {input_language} and {output_language} are placeholders (we'll fill them later).
Create the Human Message Template

This defines the user's input (the text to translate):

python 复制代码
# Template string for the human message
human_template = "{text}"  # {text} is a placeholder for the user's text

# Convert the string to a HumanMessagePromptTemplate
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

Step 3: Combine Templates into chat_prompt

Use ChatPromptTemplate.from_messages() to merge the system and human message templates into a single chat_prompt:

python 复制代码
# Combine the two message templates into a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([
    system_message_prompt,  # First: system instructions
    human_message_prompt    # Second: user input
])

Final Result: What chat_prompt Contains

The chat_prompt variable now holds a structured prompt that:

  1. Includes the system's role (translation task).
  2. Includes a placeholder for the user's text.
  3. Can be filled with actual values (e.g., input_language="English", text="I love programming") later using .format() or .format_prompt().

This exact structure matches the original source---no changes to code or logic. The chat_prompt is simply a container for combining message templates to guide the AI's behavior.

相关推荐
学历真的很重要8 小时前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
工藤学编程9 小时前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
sinat_2869451912 小时前
AI Coding LSP
人工智能·算法·prompt·transformer
GISer_Jing13 小时前
智能体工具使用、规划模式
人工智能·设计模式·prompt·aigc
Smoothzjc13 小时前
别再只把AI当聊天机器人了!揭秘大模型进化的终极形态,看完颠覆你的认知!
后端·langchain·ai编程
SCBAiotAigc14 小时前
langchain1.x学习笔记(三):langchain之init_chat_model的新用法
人工智能·python·langchain·langgraph·deepagents
切糕师学AI16 小时前
AI 领域中的 Prompt(提示词/提示)是什么?
人工智能·prompt
工藤学编程19 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
ohyeah1 天前
打造 AI 驱动的 Git 提交规范助手:基于 React + Express + Ollama+langchain 的全栈实践
langchain·全栈·ollama
XiaoYu20021 天前
第11章 LangChain
前端·javascript·langchain