redis 大key、热key优化技巧|空间存储优化|调优技巧(一)

写在前面

自从做C端业务后,就不可避免地和缓存打交道,包括本地缓存和redis。这是一个系列文章,本文举一个用户黑名单的例子讲讲我平时用的redis的数据结构和调优技巧,包括大key和热key的优化

SET 数据结构

在C端业务中,我们经常会存储一些数据到redis中,比如用户黑名单。相比于LIST数据结构来说,SET 数据结构会更适合,语法操作简单。 假设key为systemic:black:uid,里面存储黑名单的用户uid。

  • 去重性 : 自动去除重复元素,保证集合中元素的唯一性。符合要求的用户加入黑名单即可,不需要考虑set中是否已经包含了该用户,SADD systemic:black:uid 1
  • 高效查找 : O(1) 时间复杂度判断元素是否存在。可以快速查找某个用户是否在这个黑名单中,SISMEMBER systemic:black:uid 1

热key

⚠️注意一点,这里是单key并且是全局 ,这也意味着会有很多请求打到这个key上,此时就会面临热key的问题。

通常来说,我们Redis是一个分布式集群,而在Redis的Cluster 集群模式中,会使用哈希槽(hash slot)的方式来进行数据分片,将整个数据集划分为多个槽,每个槽分配给一个节点。 客户端访问数据时,先计算出数据对应的槽,然后直接连接到该槽所在的节点进行操作。

所以我们的数据其实是存在redis集群的某个数据分片中,热key最直观的原因就会导致集群资源利用不均,某个节点CPU、内存、网络打满,而其他节点资源闲置。

解决思路其实很简单,那就是增加本地缓存,并定时更新本地缓存。

大key

随着业务的发展,用户黑名单数量激增,如果现在需要存储10w的用户黑名单,那么就变成大key 问题了,应该怎么优化呢?

其实也很简单,我们可以做分片存储将一个key变成多个key,一个key存储一部分的数据,和上面的slot是类似的思路。

比如我们分 128个key 进行存储,那么10w / 128 = 780,也就是一个key存储大约780个元素,具体的分片规则,可以直接用 uid % 128

比如:

  • uid = 1,对128取余,对应的key就是systemic:black:uid_1 ,uid = 1就会放到这个key的value中。
  • uid = 2,对128取余,对应的key就是systemic:black:uid_2 ,uid = 2就会放到这个key的value中。
  • ...以此类推

下一篇文章,我们就来讲讲string数据结构的注意点和优化技巧。

相关推荐
一 乐6 小时前
婚纱摄影网站|基于ssm + vue婚纱摄影网站系统(源码+数据库+文档)
前端·javascript·数据库·vue.js·spring boot·后端
1.14(java)7 小时前
SQL数据库操作:从CRUD到高级查询
数据库
Full Stack Developme8 小时前
数据库索引的原理及类型和应用场景
数据库
IDC02_FEIYA10 小时前
SQL Server 2025数据库安装图文教程(附SQL Server2025数据库下载安装包)
数据库·windows
辞砚技术录10 小时前
MySQL面试题——联合索引
数据库·面试
萧曵 丶10 小时前
MySQL 主键不推荐使用 UUID 的深层原因
数据库·mysql·索引
小北方城市网10 小时前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
毕设十刻10 小时前
基于Vue的人事管理系统67zzz(程序 + 源码 + 数据库 + 调试部署 + 开发环境配置),配套论文文档字数达万字以上,文末可获取,系统界面展示置于文末
前端·数据库·vue.js
ohoy11 小时前
RedisTemplate 使用之Zset
java·开发语言·redis
小夏卷编程12 小时前
jeecg boot 路由缓存失效问题
vue.js·缓存