机器学习-回归分析概述

📘 机器学习:回归分析


✅ 一、回归分析是什么?

回归分析是研究变量之间关系的一种统计方法。

它用于回答两个核心问题:

1️⃣ 有没有关系?

2️⃣ 关系多强?如何预测?

📌 举例:

用身高(自变量 X)预测体重(因变量 Y)

预测不是完全准确 → 因为现实中还存在其他干扰因素

→ 用误差项来表示无法解释的部分


✅ 二、回归名称从哪来?

源自高尔顿的发现:

父母很高 → 孩子会偏高但更接近平均

父母很矮 → 孩子会偏矮但更接近平均

称为 回归到平均(Regression to the Mean)

因此得名:回归分析 Regression


✅ 三、模型的数学表达式

回归关系表示为:

y=f(x1​,x2​,...,xp​)+ε

符号 含义
(x1, x2,...,xp) 自变量(输入)
(y) 因变量(输出)
(ε) 误差 / 噪声(无法完全解释的部分)
(f(⋅)) 回归函数(关系形式)

✅ 四、模型分类

类型 示例 是否直线?
线性回归 (y = a + bx) ✅直线
非线性回归 指数、对数、曲线关系 ❌不是直线

📌 判断标准:不是看变量有没有平方,而是参数是否线性

例:(y = a + bx^2) → 仍是线性回归模型!


✅ 五、回归分析的目的

目的 内容说明
解释 弄清影响因素
预测 根据输入预测输出
推断 变量之间是否显著相关

📌 在机器学习应用中,回归常用于连续值预测

如:房价预测、销量预测、评分预测等


✅ 六、误差项的常见假设

  • 均值为 0
  • 方差相同(同方差性)
  • 独立性
  • 正态分布(用于显著性检验)

这些假设是否成立 → 模型可靠性的判断标准


相关推荐
Shawn_Shawn3 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like5 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a5 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者6 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗6 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信7 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235867 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs7 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习