神经网络之正交矩阵

正交矩阵(Orthogonal Matrix)

1. 定义

一个实矩阵 (Q∈Rn×n)(Q \in \mathbb{R}^{n \times n})(Q∈Rn×n) 称为正交矩阵(orthogonal matrix)

如果它满足:

Q⊤Q=QQ⊤=I Q^\top Q = QQ^\top = I Q⊤Q=QQ⊤=I

其中:

  • (Q⊤)(Q^\top)(Q⊤) 表示(Q)(Q)(Q) 的转置;
  • (I)(I)(I) 是单位矩阵。

换句话说,正交矩阵的转置等于它的逆矩阵

Q−1=Q⊤ Q^{-1} = Q^\top Q−1=Q⊤


2. 几何意义

正交矩阵对应一种长度和角度保持不变的线性变换:

  • 它可以表示 旋转(rotation)反射(reflection)
  • 向量经过正交矩阵变换后,长度不变、夹角不变。

例如,对任意向量 (x):

∣Qx∣=∣x∣ |Qx| = |x| ∣Qx∣=∣x∣


3. 列向量性质

正交矩阵的列向量(或行向量)两两正交且为单位长度:

qi⊤qj={1,i=j 0,i≠j q_i^\top q_j = \begin{cases} 1, & i = j \ 0, & i \neq j \end{cases} qi⊤qj={1,i=j 0,i=j


4. 示例

二维旋转矩阵

Q=[cos⁡θ−sin⁡θ sin⁡θcos⁡θ] Q = \begin{bmatrix} \cos\theta & -\sin\theta \ \sin\theta & \cos\theta \end{bmatrix} Q=[cosθ−sinθ sinθcosθ]

验证:

Q⊤Q=[cos⁡2θ+sin⁡2θ0 0cos⁡2θ+sin⁡2θ]=I Q^\top Q = \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 \ 0 & \cos^2\theta + \sin^2\theta \end{bmatrix} = I Q⊤Q=[cos2θ+sin2θ0 0cos2θ+sin2θ]=I

因此 (Q) 是正交矩阵。


二维反射矩阵

R=[10 0−1] R = \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} R=[10 0−1]

验证:

R⊤R=I,det⁡(R)=−1 R^\top R = I, \quad \det(R) = -1 R⊤R=I,det(R)=−1

因此 ® 也是正交矩阵,对应关于 (x) 轴的反射。


5. 重要性质

  1. 保持内积
    (Qx)⊤(Qy)=x⊤y (Qx)^\top(Qy) = x^\top y (Qx)⊤(Qy)=x⊤y

  2. 保持长度与角度
    ∣Qx∣=∣x∣,cos⁡∠(Qx,Qy)=cos⁡∠(x,y) |Qx| = |x|, \quad \cos\angle(Qx,Qy) = \cos\angle(x,y) ∣Qx∣=∣x∣,cos∠(Qx,Qy)=cos∠(x,y)

  3. 行列式
    det⁡(Q)=±1 \det(Q) = \pm 1 det(Q)=±1

  • (+1)(+1)(+1):旋转矩阵
  • (−1)(-1)(−1):反射矩阵

6. 反射矩阵与正交矩阵关系

反射矩阵可写为:

R=I−2nn⊤ R = I - 2nn^\top R=I−2nn⊤

其中 (n) 是单位法向量。验证:

R⊤R=I,det⁡(R)=−1 R^\top R = I, \quad \det(R) = -1 R⊤R=I,det(R)=−1

所以反射矩阵也是正交矩阵的一种。


7. 总结

  • 核心特征 :转置等于逆矩阵 (Q−1=Q⊤)(Q^{-1}=Q^\top)(Q−1=Q⊤);
  • 几何意义:保持长度和角度;
  • 行列式:+1 表示旋转,−1 表示反射;
  • 列向量:单位正交;
  • 常见正交矩阵:旋转矩阵、反射矩阵、置换矩阵、单位矩阵等。
相关推荐
CODECOLLECT5 分钟前
技术解析|MDM移动设备管理系统无终身买断制度的底层逻辑
人工智能
北京迅为9 分钟前
《【北京迅为】itop-3568开发板NPU使用手册》- 第 7章 使用RKNN-Toolkit-lite2
linux·人工智能·嵌入式·npu
我是一只puppy15 分钟前
使用AI进行代码审查
javascript·人工智能·git·安全·源代码管理
阿杰学AI16 分钟前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
esmap18 分钟前
ESMAP 智慧消防解决方案:以数字孪生技术构建全域感知消防体系,赋能消防安全管理智能化升级
人工智能·物联网·3d·编辑器·智慧城市
LaughingZhu23 分钟前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
芷栀夏32 分钟前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
用户51914958484533 分钟前
CVE-2025-47812:Wing FTP Server 高危RCE漏洞分析与利用
人工智能·aigc
阿里云大数据AI技术38 分钟前
【AAAI2026】阿里云人工智能平台PAI视频编辑算法论文入选
人工智能
玄同76540 分钟前
我的 Trae Skill 实践|使用 UV 工具一键搭建 Python 项目开发环境
开发语言·人工智能·python·langchain·uv·trae·vibe coding