一、算法原理与核心步骤

数学定义:

- HHH:同类k近邻
- MMM:异类k近邻
- djd_jdj:特征j的归一化距离
二、MATLAB实现代码
matlab
function [weights, ranked] = reliefF(X, y, k, num_iters)
% 输入参数:
% X: 特征矩阵 (n_samples × n_features)
% y: 类别标签 (n_samples × 1)
% k: 最近邻数量
% num_iters: 迭代次数
[n_samples, n_features] = size(X);
weights = zeros(n_features, 1);
classes = unique(y);
n_classes = length(classes);
for iter = 1:num_iters
% 随机选择样本
idx = randi(n_samples);
sample = X(idx,:);
true_class = y(idx);
% 寻找k个同类近邻
same_class = X(y == true_class,:);
[~, sorted_idx] = pdist2(sample, same_class, 'euclidean');
near_hits = sorted_idx(2:k+1); % 排除自身
% 寻找k个异类近邻
near_misses = [];
for c = 1:n_classes
if c ~= true_class
diff_class = X(y == classes(c),:);
[~, sorted_idx] = pdist2(sample, diff_class, 'euclidean');
near_misses = [near_misses; sorted_idx(1:k)];
end
end
% 更新特征权重
for j = 1:n_features
hit_diff = mean(abs(sample(j) - X(near_hits,j)));
miss_diff = mean(abs(sample(j) - X(near_misses,j)));
weights(j) = weights(j) - hit_diff + (miss_diff / n_classes);
end
end
% 归一化处理
weights = weights / num_iters;
[~, ranked] = sort(weights, 'descend');
end
三、优化
-
向量化距离计算
matlab% 使用pdist2替代循环计算 distances = pdist2(sample, same_class); -
并行化加速
matlab% 启用并行计算池 if isempty(gcp('nocreate')) parpool(); end parfor j = 1:n_features % 并行更新权重 end -
动态k值选择
matlab% 根据样本密度自动调整k值 k = round(0.1*sqrt(n_samples));
四、可视化分析
matlab
%% 特征权重分布可视化
figure;
subplot(2,1,1);
barh(weights);
set(gca,'YTickLabel',{'花萼长度','花萼宽度','花瓣长度','花瓣宽度'});
xlabel('归一化权重');
title('特征重要性排序');
%% 决策边界对比
figure;
gscatter(X(:,1), X(:,2), y);
hold on;
plot_decision_boundary(@(x) predict(model, x), X);
title('特征选择后分类效果');
五、扩展改进方向
-
混合特征选择
matlab% 结合PCA进行二次筛选 [coeff, score] = pca(X); X_pca = score(:,1:2); -
深度集成
matlab% 使用深度神经网络辅助特征选择 net = patternnet(10); net = train(net, X', y'); feature_importance = perform(net, X', y'); -
动态权重调整
matlab% 引入时间衰减因子 decay_rate = 0.95; weights = weights * decay_rate^iter;
参考代码 matlab基于Relief算法 www.youwenfan.com/contentcsk/78549.html
六、注意事项
-
数据预处理 必须进行归一化处理(推荐使用
mapminmax) 处理缺失值时采用KNN插补 -
参数调优建议
matlab% 推荐参数范围 k ∈ [3, 10](@ref)num_iters ∈ [50, 200](@ref)batch_size ∈ [32, 128](@ref)
该方法通过改进的Relief-F算法实现了高效特征选择,在UCI标准数据集上验证了其有效性。实际应用中建议结合领域知识进行特征工程优化