一、算法原理与核心步骤

数学定义:

- HHH:同类k近邻
 - MMM:异类k近邻
 - djd_jdj:特征j的归一化距离
 
二、MATLAB实现代码
            
            
              matlab
              
              
            
          
          function [weights, ranked] = reliefF(X, y, k, num_iters)
    % 输入参数:
    % X: 特征矩阵 (n_samples × n_features)
    % y: 类别标签 (n_samples × 1)
    % k: 最近邻数量
    % num_iters: 迭代次数
    
    [n_samples, n_features] = size(X);
    weights = zeros(n_features, 1);
    classes = unique(y);
    n_classes = length(classes);
    
    for iter = 1:num_iters
        % 随机选择样本
        idx = randi(n_samples);
        sample = X(idx,:);
        true_class = y(idx);
        
        % 寻找k个同类近邻
        same_class = X(y == true_class,:);
        [~, sorted_idx] = pdist2(sample, same_class, 'euclidean');
        near_hits = sorted_idx(2:k+1);  % 排除自身
        
        % 寻找k个异类近邻
        near_misses = [];
        for c = 1:n_classes
            if c ~= true_class
                diff_class = X(y == classes(c),:);
                [~, sorted_idx] = pdist2(sample, diff_class, 'euclidean');
                near_misses = [near_misses; sorted_idx(1:k)];
            end
        end
        
        % 更新特征权重
        for j = 1:n_features
            hit_diff = mean(abs(sample(j) - X(near_hits,j)));
            miss_diff = mean(abs(sample(j) - X(near_misses,j)));
            weights(j) = weights(j) - hit_diff + (miss_diff / n_classes);
        end
    end
    
    % 归一化处理
    weights = weights / num_iters;
    [~, ranked] = sort(weights, 'descend');
end
        三、优化
- 
向量化距离计算
matlab% 使用pdist2替代循环计算 distances = pdist2(sample, same_class); - 
并行化加速
matlab% 启用并行计算池 if isempty(gcp('nocreate')) parpool(); end parfor j = 1:n_features % 并行更新权重 end - 
动态k值选择
matlab% 根据样本密度自动调整k值 k = round(0.1*sqrt(n_samples)); 
四、可视化分析
            
            
              matlab
              
              
            
          
          %% 特征权重分布可视化
figure;
subplot(2,1,1);
barh(weights);
set(gca,'YTickLabel',{'花萼长度','花萼宽度','花瓣长度','花瓣宽度'});
xlabel('归一化权重');
title('特征重要性排序');
%% 决策边界对比
figure;
gscatter(X(:,1), X(:,2), y);
hold on;
plot_decision_boundary(@(x) predict(model, x), X);
title('特征选择后分类效果');
        五、扩展改进方向
- 
混合特征选择
matlab% 结合PCA进行二次筛选 [coeff, score] = pca(X); X_pca = score(:,1:2); - 
深度集成
matlab% 使用深度神经网络辅助特征选择 net = patternnet(10); net = train(net, X', y'); feature_importance = perform(net, X', y'); - 
动态权重调整
matlab% 引入时间衰减因子 decay_rate = 0.95; weights = weights * decay_rate^iter; 
参考代码 matlab基于Relief算法 www.youwenfan.com/contentcsk/78549.html
六、注意事项
- 
数据预处理 必须进行归一化处理(推荐使用
mapminmax) 处理缺失值时采用KNN插补 - 
参数调优建议
matlab% 推荐参数范围 k ∈ [3, 10](@ref)num_iters ∈ [50, 200](@ref)batch_size ∈ [32, 128](@ref) 
该方法通过改进的Relief-F算法实现了高效特征选择,在UCI标准数据集上验证了其有效性。实际应用中建议结合领域知识进行特征工程优化