24.全连接卷积神经网络(FCN)

python 复制代码
######################################################################################################################
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
import os
import random
import numpy as np
import torchvision.models as models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from tqdm import tqdm
from torchvision import datasets,transforms
from sklearn.metrics import accuracy_score 
import warnings
from datetime import datetime
warnings.filterwarnings("ignore")
###########################################################################################################################################
def set_stable_seed(seed=42):
    #固定一下随机数种子保证结果可以复现:seed=42
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed) 
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.use_deterministic_algorithms(False)
    os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
###########################################################################################################################################
###########################################################################################################################################
def plot_metrics(train_loss_list, train_acc_list, test_acc_list, title='Training Curve'):
    epochs = range(1, len(train_loss_list) + 1)
    time=datetime.now().strftime("%d-%H-%M-%S")
    plt.figure(figsize=(4, 3))
    plt.plot(epochs, train_loss_list, label='Train Loss')
    plt.plot(epochs, train_acc_list, label='Train Acc',linestyle='--')
    plt.plot(epochs, test_acc_list, label='Test Acc', linestyle='--')
    plt.xlabel('Epoch')
    plt.ylabel('Value')
    plt.title(title)
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.savefig(f"pascal-voc-21-result-{time}.png",dpi=300)
    #plt.show()
def train_model(model,train_data,test_data,num_epochs,criterion,optimizer):
    train_loss_list = []
    train_acc_list = []
    test_acc_list = []
    for epoch in range(num_epochs):
        total_loss=0
        total_acc_sample=0
        total_samples=0
        loop1=tqdm(train_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")
        for X,y in loop1:
            #print(X.shape)
            #X=X.reshape(X.shape[0],-1)
            #print(X.shape)
            X=X.to(device)
            y = torch.tensor(y).to(device)
            y_hat=model(X)
            loss=criterion(y_hat,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            #loss累加
            total_loss+=loss.item()*X.shape[0]
            y_pred = y_hat.argmax(dim=1).detach().cpu().numpy().flatten()  # 扁平化为一维
            y_true = y.detach().cpu().numpy().flatten()  # 扁平化为一维
            total_acc_sample += accuracy_score(y_true, y_pred) * X.shape[0]
            total_samples+=X.shape[0]
        test_acc_samples=0
        test_samples=0
        loop2=tqdm(test_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")
        for X,y in loop2:
            X=X.to(device)
            y = torch.tensor(y).to(device)
            #X=X.reshape(X.shape[0],-1)
            y_hat=model(X)
            y_pred = y_hat.argmax(dim=1).detach().cpu().numpy().flatten()  # 扁平化为一维
            y_true = y.detach().cpu().numpy().flatten()  # 扁平化为一维
            test_acc_samples+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
            test_samples+=X.shape[0]
        avg_train_loss=total_loss/total_samples
        avg_train_acc=total_acc_sample/total_samples
        avg_test_acc=test_acc_samples/test_samples
        train_loss_list.append(avg_train_loss)
        train_acc_list.append(avg_train_acc)
        test_acc_list.append(avg_test_acc)
        print(f"Epoch {epoch+1}: Train Loss: {avg_train_loss:.4f},Trian Accuracy: {avg_train_acc:.4f},test Accuracy: {avg_test_acc:.4f}")
    plot_metrics(train_loss_list, train_acc_list, test_acc_list)
    #return model
###########################################################################################################################################
######################################################################################################################
#类别参数以及映射:
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
                [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
                [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
                [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
                [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
                [0, 64, 128]]
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
               'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
               'diningtable', 'dog', 'horse', 'motorbike', 'person',
               'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
######################################################################################################################
#用双线性插值来初始化卷积层:
def bilinear_kernel(in_channels, out_channels, kernel_size):
    factor = (kernel_size + 1) // 2
    if kernel_size % 2 == 1:
        center = factor - 1
    else:
        center = factor - 0.5
    og = (torch.arange(kernel_size).reshape(-1, 1),
          torch.arange(kernel_size).reshape(1, -1))
    filt = (1 - torch.abs(og[0] - center) / factor) * \
           (1 - torch.abs(og[1] - center) / factor)
    weight = torch.zeros((in_channels, out_channels,
                          kernel_size, kernel_size))
    weight[range(in_channels), range(out_channels), :, :] = filt
    return weight
######################################################################################################################
def read_voc_images(voc_dir, is_train=True):
    """读取所有VOC图像并标注"""
    txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation',
                             'train.txt' if is_train else 'val.txt')
    mode = torchvision.io.image.ImageReadMode.RGB
    with open(txt_fname, 'r') as f:
        images = f.read().split()
    features, labels = [], []
    for i, fname in enumerate(images):
        features.append(torchvision.io.read_image(os.path.join(
            voc_dir, 'JPEGImages', f'{fname}.jpg')))
        labels.append(torchvision.io.read_image(os.path.join(
            voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode))
    return features, labels
def voc_colormap2label():
    """构建从RGB到VOC类别索引的映射"""
    colormap2label = torch.zeros(256 ** 3, dtype=torch.long)
    for i, colormap in enumerate(VOC_COLORMAP):
        colormap2label[
            (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i
    return colormap2label
#@save
def voc_label_indices(colormap, colormap2label):
    """将VOC标签中的RGB值映射到它们的类别索引"""
    colormap = colormap.permute(1, 2, 0).numpy().astype('int32')
    idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256
           + colormap[:, :, 2])
    return colormap2label[idx]
def voc_rand_crop(feature, label, height, width):
    """随机裁剪特征和标签图像"""
    rect = torchvision.transforms.RandomCrop.get_params(
        feature, (height, width))
    feature = torchvision.transforms.functional.crop(feature, *rect)
    label = torchvision.transforms.functional.crop(label, *rect)
    return feature, label
class VOCSegDataset(torch.utils.data.Dataset):
    """一个用于加载VOC数据集的自定义数据集"""
    def __init__(self, is_train, crop_size, voc_dir):
        self.transform = torchvision.transforms.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        self.crop_size = crop_size
        features, labels = read_voc_images(voc_dir, is_train=is_train)
        self.features = [self.normalize_image(feature)
                         for feature in self.filter(features)]
        self.labels = self.filter(labels)
        self.colormap2label = voc_colormap2label()
        print('read ' + str(len(self.features)) + ' examples')

    def normalize_image(self, img):
        return self.transform(img.float() / 255)
    #这里需要过滤一下低于crop size的小图片:
    def filter(self, imgs):
        return [img for img in imgs if (
            img.shape[1] >= self.crop_size[0] and
            img.shape[2] >= self.crop_size[1])]

    def __getitem__(self, idx):
        feature, label = voc_rand_crop(self.features[idx], self.labels[idx],
                                       *self.crop_size)
        return (feature, voc_label_indices(label, self.colormap2label))

    def __len__(self):
        return len(self.features)
def load_data_voc(batch_size, crop_size):
    """加载VOC语义分割数据集"""
    voc_dir=r"/data/Public/Datasets/d2l-limu/VOCdevkit/VOC2012/"
    num_workers = 32
    train_iter = torch.utils.data.DataLoader(
        VOCSegDataset(True, crop_size, voc_dir), batch_size,
        shuffle=True, drop_last=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(
        VOCSegDataset(False, crop_size, voc_dir), batch_size,
        drop_last=True, num_workers=num_workers)
    return train_iter, test_iter
######################################################################################################################
#训练的过程中loss需要变化一下:
class SegLoss(nn.Module):
    def __init__(self):
        super(SegLoss, self).__init__()

    def forward(self, inputs, targets):
        return F.cross_entropy(inputs, targets)
######################################################################################################################
if __name__=='__main__':
    set_stable_seed(seed=42)
    pretrained_net = torchvision.models.resnet18(pretrained=True)
    net = nn.Sequential(*list(pretrained_net.children())[:-2])
    num_classes = 21
    net.add_module('final_conv', nn.Conv2d(512, num_classes, kernel_size=1))
    net.add_module('transpose_conv', nn.ConvTranspose2d(num_classes, num_classes,kernel_size=64, padding=16, stride=32))
    W = bilinear_kernel(num_classes, num_classes, 64)#效果会好一些
    net.transpose_conv.weight.data.copy_(W)
    device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    net.to(device)
    criterion=SegLoss()
    batch_size, crop_size = 32, (320, 480)
    train_iter, test_iter = load_data_voc(batch_size, crop_size)
    optimizer=torch.optim.SGD(net.parameters(),lr=0.001,momentum=0.9)
    train_model(net,train_iter,test_iter,num_epochs=10,criterion=criterion,optimizer=optimizer)
python 复制代码
def predict(img):
    X = test_iter.dataset.normalize_image(img).unsqueeze(0)
    pred = net(X.to(device)).argmax(dim=1)
    return pred.reshape(pred.shape[1], pred.shape[2])
def label2image(pred):
    colormap = torch.tensor(VOC_COLORMAP, device=device)
    X = pred.long()
    return colormap[X, :]
voc_dir=r"/data/Public/Datasets/d2l-limu/VOCdevkit/VOC2012/"
test_images, test_labels = read_voc_images(voc_dir, False)
n, imgs = 4, []
for i in range(n):
    crop_rect = (0, 0, 320, 480)
    X = torchvision.transforms.functional.crop(test_images[i], *crop_rect)
    pred = label2image(predict(X))
    imgs += [X.permute(1,2,0), pred.cpu(),
             torchvision.transforms.functional.crop(
                 test_labels[i], *crop_rect).permute(1,2,0)]
imgs_grouped = imgs[::3] + imgs[1::3] + imgs[2::3]
n = len(imgs_grouped)
scale=2
rows = (n // 4) + (1 if n % 4 else 0)  
fig, axes = plt.subplots(rows, 4, figsize=(scale * 4, scale * rows))
for i, ax in enumerate(axes.flat):
    if i < n:
        ax.imshow(imgs_grouped[i]) 
        ax.axis('off')  
    else:
        ax.axis('off') 
plt.tight_layout()  
plt.show()
相关推荐
zhangrelay2 小时前
如何使用AI快速编程实现标注ROS2中sensor_msgs/msg/Image图像色彩webots2025a
人工智能·笔记·opencv·学习·计算机视觉·机器人视觉
武子康2 小时前
AI研究-120 DeepSeek-OCR 从 0 到 1:上手路线、实战要点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
大千AI助手2 小时前
LIFT:基于低秩引导的稀疏微调
人工智能·神经网络·lora·大模型·lift·大千ai助手·稀疏微调
Serverless 社区3 小时前
算力成本降低 33%,与光同尘用 Serverless AI 赋能影视商业内容生产
人工智能·云原生·serverless
L.EscaRC3 小时前
【AI基础篇】Transformer架构深度解析与前沿应用
人工智能·深度学习·transformer
王中阳Go3 小时前
3 - RAG 知识库基础 - AI 超级智能体项目教程
人工智能·agent
司马阅-SmartRead3 小时前
司马阅与数之境科技达成生态战略合作,释放1+1>2的产业赋能价值
人工智能
化作星辰3 小时前
四层神经网络案例(含反向传播)
人工智能·深度学习·神经网络
m0_650108243 小时前
【论文精读】AVID:基于扩散模型的任意长度视频修复
人工智能·扩散模型·论文精读·视频修复·时序一致性·任意时长·结构引导