24.全连接卷积神经网络(FCN)

python 复制代码
######################################################################################################################
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
import os
import random
import numpy as np
import torchvision.models as models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from tqdm import tqdm
from torchvision import datasets,transforms
from sklearn.metrics import accuracy_score 
import warnings
from datetime import datetime
warnings.filterwarnings("ignore")
###########################################################################################################################################
def set_stable_seed(seed=42):
    #固定一下随机数种子保证结果可以复现:seed=42
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed) 
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.use_deterministic_algorithms(False)
    os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
###########################################################################################################################################
###########################################################################################################################################
def plot_metrics(train_loss_list, train_acc_list, test_acc_list, title='Training Curve'):
    epochs = range(1, len(train_loss_list) + 1)
    time=datetime.now().strftime("%d-%H-%M-%S")
    plt.figure(figsize=(4, 3))
    plt.plot(epochs, train_loss_list, label='Train Loss')
    plt.plot(epochs, train_acc_list, label='Train Acc',linestyle='--')
    plt.plot(epochs, test_acc_list, label='Test Acc', linestyle='--')
    plt.xlabel('Epoch')
    plt.ylabel('Value')
    plt.title(title)
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.savefig(f"pascal-voc-21-result-{time}.png",dpi=300)
    #plt.show()
def train_model(model,train_data,test_data,num_epochs,criterion,optimizer):
    train_loss_list = []
    train_acc_list = []
    test_acc_list = []
    for epoch in range(num_epochs):
        total_loss=0
        total_acc_sample=0
        total_samples=0
        loop1=tqdm(train_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")
        for X,y in loop1:
            #print(X.shape)
            #X=X.reshape(X.shape[0],-1)
            #print(X.shape)
            X=X.to(device)
            y = torch.tensor(y).to(device)
            y_hat=model(X)
            loss=criterion(y_hat,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            #loss累加
            total_loss+=loss.item()*X.shape[0]
            y_pred = y_hat.argmax(dim=1).detach().cpu().numpy().flatten()  # 扁平化为一维
            y_true = y.detach().cpu().numpy().flatten()  # 扁平化为一维
            total_acc_sample += accuracy_score(y_true, y_pred) * X.shape[0]
            total_samples+=X.shape[0]
        test_acc_samples=0
        test_samples=0
        loop2=tqdm(test_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")
        for X,y in loop2:
            X=X.to(device)
            y = torch.tensor(y).to(device)
            #X=X.reshape(X.shape[0],-1)
            y_hat=model(X)
            y_pred = y_hat.argmax(dim=1).detach().cpu().numpy().flatten()  # 扁平化为一维
            y_true = y.detach().cpu().numpy().flatten()  # 扁平化为一维
            test_acc_samples+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
            test_samples+=X.shape[0]
        avg_train_loss=total_loss/total_samples
        avg_train_acc=total_acc_sample/total_samples
        avg_test_acc=test_acc_samples/test_samples
        train_loss_list.append(avg_train_loss)
        train_acc_list.append(avg_train_acc)
        test_acc_list.append(avg_test_acc)
        print(f"Epoch {epoch+1}: Train Loss: {avg_train_loss:.4f},Trian Accuracy: {avg_train_acc:.4f},test Accuracy: {avg_test_acc:.4f}")
    plot_metrics(train_loss_list, train_acc_list, test_acc_list)
    #return model
###########################################################################################################################################
######################################################################################################################
#类别参数以及映射:
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
                [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
                [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
                [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
                [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
                [0, 64, 128]]
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
               'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
               'diningtable', 'dog', 'horse', 'motorbike', 'person',
               'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
######################################################################################################################
#用双线性插值来初始化卷积层:
def bilinear_kernel(in_channels, out_channels, kernel_size):
    factor = (kernel_size + 1) // 2
    if kernel_size % 2 == 1:
        center = factor - 1
    else:
        center = factor - 0.5
    og = (torch.arange(kernel_size).reshape(-1, 1),
          torch.arange(kernel_size).reshape(1, -1))
    filt = (1 - torch.abs(og[0] - center) / factor) * \
           (1 - torch.abs(og[1] - center) / factor)
    weight = torch.zeros((in_channels, out_channels,
                          kernel_size, kernel_size))
    weight[range(in_channels), range(out_channels), :, :] = filt
    return weight
######################################################################################################################
def read_voc_images(voc_dir, is_train=True):
    """读取所有VOC图像并标注"""
    txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation',
                             'train.txt' if is_train else 'val.txt')
    mode = torchvision.io.image.ImageReadMode.RGB
    with open(txt_fname, 'r') as f:
        images = f.read().split()
    features, labels = [], []
    for i, fname in enumerate(images):
        features.append(torchvision.io.read_image(os.path.join(
            voc_dir, 'JPEGImages', f'{fname}.jpg')))
        labels.append(torchvision.io.read_image(os.path.join(
            voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode))
    return features, labels
def voc_colormap2label():
    """构建从RGB到VOC类别索引的映射"""
    colormap2label = torch.zeros(256 ** 3, dtype=torch.long)
    for i, colormap in enumerate(VOC_COLORMAP):
        colormap2label[
            (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i
    return colormap2label
#@save
def voc_label_indices(colormap, colormap2label):
    """将VOC标签中的RGB值映射到它们的类别索引"""
    colormap = colormap.permute(1, 2, 0).numpy().astype('int32')
    idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256
           + colormap[:, :, 2])
    return colormap2label[idx]
def voc_rand_crop(feature, label, height, width):
    """随机裁剪特征和标签图像"""
    rect = torchvision.transforms.RandomCrop.get_params(
        feature, (height, width))
    feature = torchvision.transforms.functional.crop(feature, *rect)
    label = torchvision.transforms.functional.crop(label, *rect)
    return feature, label
class VOCSegDataset(torch.utils.data.Dataset):
    """一个用于加载VOC数据集的自定义数据集"""
    def __init__(self, is_train, crop_size, voc_dir):
        self.transform = torchvision.transforms.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        self.crop_size = crop_size
        features, labels = read_voc_images(voc_dir, is_train=is_train)
        self.features = [self.normalize_image(feature)
                         for feature in self.filter(features)]
        self.labels = self.filter(labels)
        self.colormap2label = voc_colormap2label()
        print('read ' + str(len(self.features)) + ' examples')

    def normalize_image(self, img):
        return self.transform(img.float() / 255)
    #这里需要过滤一下低于crop size的小图片:
    def filter(self, imgs):
        return [img for img in imgs if (
            img.shape[1] >= self.crop_size[0] and
            img.shape[2] >= self.crop_size[1])]

    def __getitem__(self, idx):
        feature, label = voc_rand_crop(self.features[idx], self.labels[idx],
                                       *self.crop_size)
        return (feature, voc_label_indices(label, self.colormap2label))

    def __len__(self):
        return len(self.features)
def load_data_voc(batch_size, crop_size):
    """加载VOC语义分割数据集"""
    voc_dir=r"/data/Public/Datasets/d2l-limu/VOCdevkit/VOC2012/"
    num_workers = 32
    train_iter = torch.utils.data.DataLoader(
        VOCSegDataset(True, crop_size, voc_dir), batch_size,
        shuffle=True, drop_last=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(
        VOCSegDataset(False, crop_size, voc_dir), batch_size,
        drop_last=True, num_workers=num_workers)
    return train_iter, test_iter
######################################################################################################################
#训练的过程中loss需要变化一下:
class SegLoss(nn.Module):
    def __init__(self):
        super(SegLoss, self).__init__()

    def forward(self, inputs, targets):
        return F.cross_entropy(inputs, targets)
######################################################################################################################
if __name__=='__main__':
    set_stable_seed(seed=42)
    pretrained_net = torchvision.models.resnet18(pretrained=True)
    net = nn.Sequential(*list(pretrained_net.children())[:-2])
    num_classes = 21
    net.add_module('final_conv', nn.Conv2d(512, num_classes, kernel_size=1))
    net.add_module('transpose_conv', nn.ConvTranspose2d(num_classes, num_classes,kernel_size=64, padding=16, stride=32))
    W = bilinear_kernel(num_classes, num_classes, 64)#效果会好一些
    net.transpose_conv.weight.data.copy_(W)
    device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    net.to(device)
    criterion=SegLoss()
    batch_size, crop_size = 32, (320, 480)
    train_iter, test_iter = load_data_voc(batch_size, crop_size)
    optimizer=torch.optim.SGD(net.parameters(),lr=0.001,momentum=0.9)
    train_model(net,train_iter,test_iter,num_epochs=10,criterion=criterion,optimizer=optimizer)
python 复制代码
def predict(img):
    X = test_iter.dataset.normalize_image(img).unsqueeze(0)
    pred = net(X.to(device)).argmax(dim=1)
    return pred.reshape(pred.shape[1], pred.shape[2])
def label2image(pred):
    colormap = torch.tensor(VOC_COLORMAP, device=device)
    X = pred.long()
    return colormap[X, :]
voc_dir=r"/data/Public/Datasets/d2l-limu/VOCdevkit/VOC2012/"
test_images, test_labels = read_voc_images(voc_dir, False)
n, imgs = 4, []
for i in range(n):
    crop_rect = (0, 0, 320, 480)
    X = torchvision.transforms.functional.crop(test_images[i], *crop_rect)
    pred = label2image(predict(X))
    imgs += [X.permute(1,2,0), pred.cpu(),
             torchvision.transforms.functional.crop(
                 test_labels[i], *crop_rect).permute(1,2,0)]
imgs_grouped = imgs[::3] + imgs[1::3] + imgs[2::3]
n = len(imgs_grouped)
scale=2
rows = (n // 4) + (1 if n % 4 else 0)  
fig, axes = plt.subplots(rows, 4, figsize=(scale * 4, scale * rows))
for i, ax in enumerate(axes.flat):
    if i < n:
        ax.imshow(imgs_grouped[i]) 
        ax.axis('off')  
    else:
        ax.axis('off') 
plt.tight_layout()  
plt.show()
相关推荐
JoannaJuanCV8 分钟前
自动驾驶—CARLA仿真(13)dynamic_weather demo
人工智能·机器学习·自动驾驶·carla
拉姆哥的小屋9 分钟前
从400维向量到160000维矩阵:基于深度学习的火焰参数预测系统全解析
开发语言·人工智能·python·深度学习·线性代数·算法·矩阵
北京耐用通信10 分钟前
工程师实战:如何以最小成本,耐达讯自动化无缝连接Profinet转DeviceNet网关
人工智能·物联网·网络协议·自动化·信息与通信
_codemonster10 分钟前
自然语言处理容易混淆知识点(三)大模型中的参数
人工智能·自然语言处理
Elwin Wong11 分钟前
本地运行LangChain Agent用于开发调试
人工智能·langchain·大模型·llm·agent·codingagent
IALab-检测行业AI报告生成14 分钟前
AI驱动万页报告审核革新:IACheck技术架构与实践价值解析
人工智能·架构
小马过河R15 分钟前
Codebuddy使用CloudBase MCP辅助AI编码基于Spec工作流开发的坦克大战小游戏
人工智能·团队开发·ai编程·codebuddy
多则惑少则明15 分钟前
AI测试、大模型测试(九)spring集成大模型(AI4J)
人工智能·ai测试·大模型测试
benxin123415 分钟前
智能压力测试代理系统:基于AI的自动化压测解决方案
人工智能·自动化·压力测试
老蒋新思维16 分钟前
创客匠人:小团队的知识变现革命 —— 超级个体 + 多智能体如何重构组织价值
服务器·网络·人工智能·重构·创始人ip·创客匠人·知识变现