线性代数 - 线性方程组的原始解法(高斯消元法)

线性代数 - 线性方程组的原始解法(高斯消元法)

flyfish

线性方程组

方程组:{2x1+x2+x3=1(1)4x1+3x2+3x3=2(2)8x1+7x2+9x3=6(3)即 Ax=b, A=[211433879], b=[126] \text{方程组:}\begin{cases} 2x_1 + x_2 + x_3 = 1 \quad (1) \\ 4x_1 + 3x_2 + 3x_3 = 2 \quad (2) \\ 8x_1 + 7x_2 + 9x_3 = 6 \quad (3) \end{cases} \quad \text{即}\ \mathbf{Ax}=\mathbf{b},\ \mathbf{A}=\begin{bmatrix}2&1&1\\4&3&3\\8&7&9\end{bmatrix},\ \mathbf{b}=\begin{bmatrix}1\\2\\6\end{bmatrix} 方程组:⎩ ⎨ ⎧2x1+x2+x3=1(1)4x1+3x2+3x3=2(2)8x1+7x2+9x3=6(3)即 Ax=b, A= 248137139 , b= 126

高斯消元法

逐步消去未知数的系数

增广矩阵

增广矩阵是把线性方程组的系数矩阵常数项向量"拼在一起"形成的新矩阵,目的是让"系数"和"常数"同步进行行变换,避免分开操作出错。

{2x1+x2+x3=1(常数项1)4x1+3x2+3x3=2(常数项2)8x1+7x2+9x3=6(常数项6) \begin{cases} 2x_1 + x_2 + x_3 = 1 \quad (\text{常数项1}) \\ 4x_1 + 3x_2 + 3x_3 = 2 \quad (\text{常数项2}) \\ 8x_1 + 7x_2 + 9x_3 = 6 \quad (\text{常数项6}) \end{cases} ⎩ ⎨ ⎧2x1+x2+x3=1(常数项1)4x1+3x2+3x3=2(常数项2)8x1+7x2+9x3=6(常数项6)

系数矩阵A\mathbf{A}A(只放未知数的系数):[211433879]\begin{bmatrix}2&1&1\\4&3&3\\8&7&9\end{bmatrix} 248137139

常数项向量b\mathbf{b}b(只放等号右边的数):[126]\begin{bmatrix}1\\2\\6\end{bmatrix} 126

把两者用竖线隔开,拼在一起就是增广矩阵

A∣b\]=\[211143328796\] \[\\mathbf{A}\|\\mathbf{b}\] = \\left\[\\begin{array}{ccc\|c} 2 \& 1 \& 1 \& 1 \\\\ % 第1行:系数+常数项1 4 \& 3 \& 3 \& 2 \\\\ % 第2行:系数+常数项2 8 \& 7 \& 9 \& 6 % 第3行:系数+常数项6 \\end{array}\\right\] \[A∣b\]= 248137139126 竖线左边是"未知数的系数",右边是"等号后的常数",这样后续做行变换时,系数和常数能同步变化,保证方程组的等价性(比如"给第1行乘2",系数和常数会一起乘2,方程依然成立) ### 原始解法:高斯消元法(直接求解) 通过**行变换** 将增广矩阵\[A∣b\]\[\\mathbf{A}\|\\mathbf{b}\]\[A∣b\]转化为上三角矩阵,再回代求解。 #### 一、:构造增广矩阵并消元(转化为上三角) 增广矩阵: \[A∣b\]=\[211143328796\] \[\\mathbf{A}\|\\mathbf{b}\] = \\left\[\\begin{array}{ccc\|c} 2 \& 1 \& 1 \& 1 \\\\ 4 \& 3 \& 3 \& 2 \\\\ 8 \& 7 \& 9 \& 6 \\end{array}\\right\] \[A∣b\]= 248137139126 消去第2、3行的x1x_1x1: 行2 = 行2 - 2×行1 → \[211101108796\]\\left\[\\begin{array}{ccc\|c}2\&1\&1\&1\\\\0\&1\&1\&0\\\\8\&7\&9\&6\\end{array}\\right\] 208117119106 行3 = 行3 - 4×行1 → \[211101100352\]\\left\[\\begin{array}{ccc\|c}2\&1\&1\&1\\\\0\&1\&1\&0\\\\0\&3\&5\&2\\end{array}\\right\] 200113115102 消去第3行的x2x_2x2: 行3 = 行3 - 3×行2 → \[211101100022\]\\left\[\\begin{array}{ccc\|c}2\&1\&1\&1\\\\0\&1\&1\&0\\\\0\&0\&2\&2\\end{array}\\right\] 200110112102 (上三角增广矩阵) #### 二、回代求解 由第3行:2x3=2  ⟹  x3=12x_3=2 \\implies x_3=12x3=2⟹x3=1 代入第2行:x2+1=0  ⟹  x2=−1x_2 + 1=0 \\implies x_2=-1x2+1=0⟹x2=−1 代入第1行:2x1−1+1=1  ⟹  x1=0.52x_1 -1 +1=1 \\implies x_1=0.52x1−1+1=1⟹x1=0.5

相关推荐
矢志航天的阿洪13 小时前
IGRF-13 数学细节与公式说明
线性代数·机器学习·矩阵
人机与认知实验室15 小时前
人机环境系统矩阵的“秩”
线性代数·矩阵
闪电麦坤9515 小时前
Leecode热题100:矩阵置零(矩阵)
线性代数·算法·矩阵
人机与认知实验室15 小时前
人机环境系统矩阵典型案例分析
线性代数·矩阵
山楂树の15 小时前
计算机图形学 模型矩阵的逆矩阵:如何从“世界”回归“局部”?
线性代数·矩阵·回归
量子炒饭大师18 小时前
【C++入门】数字算子重构的共鸣矩阵 ——【运算符重载】怎样让两个自定义对象直接相加、比较或输出? 运算符重载的完整实现指南助你破局!
c++·矩阵·重构·运算符重载
闪电麦坤9519 小时前
Leecode热题100:螺旋矩阵(矩阵)
线性代数·矩阵
AI科技星20 小时前
匀速圆周运动正电荷相关场方程的求导证明与验证
人工智能·线性代数·算法·矩阵·数据挖掘
Blossom.11820 小时前
从数字大脑到物理实体:具身智能时代的大模型微调与部署实战
人工智能·python·深度学习·fpga开发·自然语言处理·矩阵·django
victory04312 天前
交叉熵处softmax有计算被浪费,因为我们只需要target位置的softmax而不是整个矩阵的softmax
线性代数·矩阵