GPT-OSS大模型Attention架构设计

模型参数(20B和120B版本)

考虑Attention Sink的Attention计算

大模型推理时,在大部分层上能观察到注意力很大程度关注到开头的几个token上,在StreamingLLM中被称为attention sink。究其原因,并不是开头的token一定最重要,而是当大模型无法有效关注到主要token时,由于开头的token能被后面所有token看到,所以表现出很高的attention score。

因此有一类工作聚焦于 规避attention sink的出现 ,避免这样的现象影响有效的attention计算。
GPT-OSS提出bias项来修正attention sink,基本的思路是在计算完QK之后,给每个head拼接上额外的一个token(可学习的bias token),然后计算softmax,再把bias token丢弃,最后去和V相乘计算attention的输出。

GPT-OSS源代码如下(写法相对比较晦涩):

于是,我重新整理了一版更简洁的代码:

S这个可学习的bias项应该是head-wise,即给每个head都加上一个额外的token,参数定义如下:

python 复制代码
self.S = torch.nn.Parameter(torch.empty(config.num_attention_heads))

从数学角度分析,上面这个过程 本质上就是给attention的计算中分母的求和加上了额外的一项:

softmax(xi)=exp⁡(xi)∑jexp⁡(xj)→exp⁡(xi)∑jexp⁡(xj)+exp⁡(S)softmax(x_i) =\frac{\exp(x_i)}{\sum_j \exp(x_j)} \rightarrow \frac{\exp(x_i)}{\sum_j \exp(x_j)+\exp(S)}softmax(xi)=∑jexp(xj)exp(xi)→∑jexp(xj)+exp(S)exp(xi)

但注意和V相乘之前,需要去掉bias token,从而得到attention的输出。

补充:也有工作是给分母上加1,达到类似的效果,不过GPT-OSS用可学习的bias项会更加灵活。

分层混合稀疏Attention

GPT-OSS采用隔层交错的attention,混合标准的GQA(full attention)和sliding window attention。

其中,window的大小是128,通过下面的方式决定哪些层用sliding window attention:

python 复制代码
self.sliding_window = config.sliding_window if layer_idx % 2 == 0 else 0
相关推荐
GPUStack21 小时前
GPUStack v2:推理加速释放算力潜能,开源重塑大模型推理下半场
大模型·vllm·ai网关·sglang·高性能推理
WWZZ20251 天前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能
core5121 天前
不借助框架实现Text2SQL
sql·mysql·ai·大模型·qwen·text2sql
有点不太正常1 天前
《ShadowCoT: Cognitive Hijacking for Stealthy Reasoning Backdoors in LLMs》——论文阅读
论文阅读·大模型·agent安全
爬点儿啥1 天前
[Ai Agent] 09 LangGraph 进阶:构建可控、可协作的多智能体系统
人工智能·ai·langchain·大模型·agent·langgraph
WWZZ20252 天前
快速上手大模型:深度学习11(数据增强、微调、目标检测)
人工智能·深度学习·算法·目标检测·计算机视觉·大模型·具身智能
安如衫2 天前
【机器学习基础】Attention in Transformers:注意力机制
笔记·深度学习·学习·机器学习·注意力机制
许泽宇的技术分享2 天前
从零到一,开源大模型的“民主化“之路:一份让AI触手可及的实战宝典
人工智能·开源·大模型
小小工匠3 天前
LLM - 大模型与计算机视觉融合:Skyvern核心技术架构揭秘
计算机视觉·大模型·skyvern
Keep_Trying_Go3 天前
LightningCLI教程 + 视频讲解
人工智能·pytorch·语言模型·大模型·多模态·lightning