GPT-OSS大模型Attention架构设计

模型参数(20B和120B版本)

考虑Attention Sink的Attention计算

大模型推理时,在大部分层上能观察到注意力很大程度关注到开头的几个token上,在StreamingLLM中被称为attention sink。究其原因,并不是开头的token一定最重要,而是当大模型无法有效关注到主要token时,由于开头的token能被后面所有token看到,所以表现出很高的attention score。

因此有一类工作聚焦于 规避attention sink的出现 ,避免这样的现象影响有效的attention计算。
GPT-OSS提出bias项来修正attention sink,基本的思路是在计算完QK之后,给每个head拼接上额外的一个token(可学习的bias token),然后计算softmax,再把bias token丢弃,最后去和V相乘计算attention的输出。

GPT-OSS源代码如下(写法相对比较晦涩):

于是,我重新整理了一版更简洁的代码:

S这个可学习的bias项应该是head-wise,即给每个head都加上一个额外的token,参数定义如下:

python 复制代码
self.S = torch.nn.Parameter(torch.empty(config.num_attention_heads))

从数学角度分析,上面这个过程 本质上就是给attention的计算中分母的求和加上了额外的一项:

softmax(xi)=exp⁡(xi)∑jexp⁡(xj)→exp⁡(xi)∑jexp⁡(xj)+exp⁡(S)softmax(x_i) =\frac{\exp(x_i)}{\sum_j \exp(x_j)} \rightarrow \frac{\exp(x_i)}{\sum_j \exp(x_j)+\exp(S)}softmax(xi)=∑jexp(xj)exp(xi)→∑jexp(xj)+exp(S)exp(xi)

但注意和V相乘之前,需要去掉bias token,从而得到attention的输出。

补充:也有工作是给分母上加1,达到类似的效果,不过GPT-OSS用可学习的bias项会更加灵活。

分层混合稀疏Attention

GPT-OSS采用隔层交错的attention,混合标准的GQA(full attention)和sliding window attention。

其中,window的大小是128,通过下面的方式决定哪些层用sliding window attention:

python 复制代码
self.sliding_window = config.sliding_window if layer_idx % 2 == 0 else 0
相关推荐
hzp6663 小时前
基于大语言模型(LLM)的多智能体应用的新型服务框架——Tokencake
人工智能·语言模型·大模型·llm·智能体·tokencake
提娜米苏6 小时前
注意力机制:Jointly Learning to Align and Translate中从双向RNN编码器到软对齐的完整流程
rnn·注意力机制
大千AI助手21 小时前
LIFT:基于低秩引导的稀疏微调
人工智能·神经网络·lora·大模型·lift·大千ai助手·稀疏微调
逐云者1231 天前
使用 FastAPI 构建大模型应用的系统教程(工程化实战指南)
大模型·fastapi·router·分层架构·算法工程·算法服务
KG_LLM图谱增强大模型2 天前
[Nature子刊]浙大SciToolAgent:用知识图谱驱动的科学智能体实现多工具集成
大模型·知识图谱·工具·科学研究·graphrag
多喝开水少熬夜2 天前
损失函数系列:focal-Dice-vgg
图像处理·python·算法·大模型·llm
Cyril_KI2 天前
大模型长文生成中的幻觉与事实性:研究进展综述
大模型·llm·github·综述·幻觉
喜欢吃豆2 天前
掌握本地化大语言模型部署:llama.cpp 工作流与 GGUF 转换内核全面技术指南
人工智能·语言模型·架构·大模型·llama·llama.cpp·gguf
长颈鹿仙女3 天前
发送 Prompt 指令:判断用户评价是好评还是差评
python·大模型