HarmonyOS实战项目:AI健康助手(影像识别与健康分析)

概述:AI与健康管理的创新结合

随着人工智能技术的快速发展,AI在医疗健康领域的应用正从传统医疗场景向日常健康管理延伸。基于HarmonyOS的分布式能力和端侧AI推理优势,我们可以开发一款智能健康助手,实现医学影像识别、健康数据分析、异常预警等核心功能。

本项目将聚焦于以下创新点:基于端侧AI的轻量化医学影像分析、多模态健康数据融合处理、分布式跨设备健康管理。这些功能充分利用HarmonyOS的AI框架分布式能力,在保护用户隐私的前提下提供专业级健康服务。

健康数据模型设计

多模态健康数据标准化
复制代码
// model/HealthData.ets
export enum DataType {
    MEDICAL_IMAGE = 'medical_image',    // 医学影像
    VITAL_SIGNS = 'vital_signs',       // 生命体征
    LAB_RESULT = 'lab_result',         // 化验结果
    ACTIVITY = 'activity'              // 活动数据
}

export enum RiskLevel {
    LOW = 'low',
    MEDIUM = 'medium',
    HIGH = 'high',
    CRITICAL = 'critical'
}

export class MedicalImageData {
    imageId: string = '';
    imageType: string = '';           // CT/MRI/X光等
    bodyPart: string = '';            // 检查部位
    dicomData: ArrayBuffer = new ArrayBuffer(0);
    thumbnail: string = '';           // 缩略图
    acquisitionTime: number = 0;      // 采集时间
    metadata: Map<string, any> = new Map();

    constructor(data?: any) {
        if (data) {
            this.imageId = data.imageId || this.generateId();
            this.imageType = data.imageType || '';
            this.bodyPart = data.bodyPart || '';
            this.dicomData = data.dicomData || new ArrayBuffer(0);
            this.acquisitionTime = data.acquisitionTime || new Date().getTime();
            
            if (data.metadata) {
                Object.keys(data.metadata).forEach(key => {
                    this.metadata.set(key, data.metadata[key]);
                });
            }
        }
    }

    private generateId(): string {
        return `img_${new Date().getTime()}_${Math.random().toString(36).substr(2, 9)}`;
    }
}

export class HealthRecord {
    recordId: string = '';
    userId: string = '';
    dataType: DataType = DataType.VITAL_SIGNS;
    timestamp: number = 0;
    riskLevel: RiskLevel = RiskLevel.LOW;
    confidence: number = 0;          // AI分析置信度
    originalData: any = null;         // 原始数据
    aiAnalysis: AIAnalysisResult = new AIAnalysisResult();
    doctorReview: DoctorReview = new DoctorReview();

    constructor(data?: any) {
        if (data) {
            this.recordId = data.recordId || this.generateId();
            this.userId = data.userId || '';
            this.dataType = data.dataType || DataType.VITAL_SIGNS;
            this.timestamp = data.timestamp || new Date().getTime();
            this.riskLevel = data.riskLevel || RiskLevel.LOW;
            this.confidence = data.confidence || 0;
            this.originalData = data.originalData || null;
            
            if (data.aiAnalysis) {
                this.aiAnalysis = new AIAnalysisResult(data.aiAnalysis);
            }
        }
    }

    // 计算综合风险评分
    calculateCompositeRisk(): number {
        let baseScore = 0;
        switch (this.riskLevel) {
            case RiskLevel.LOW: baseScore = 0.2; break;
            case RiskLevel.MEDIUM: baseScore = 0.5; break;
            case RiskLevel.HIGH: baseScore = 0.8; break;
            case RiskLevel.CRITICAL: baseScore = 1.0; break;
        }
        
        // 结合置信度调整分数
        return baseScore * this.confidence;
    }
}

医学影像AI分析引擎

端侧轻量化模型部署
复制代码
// service/AIAnalysisService.ets
import hiai from '@ohos.hiai';
import image from '@ohos.multimedia.image';

export class AIAnalysisService {
    private aiEngine: hiai.AIEngine | null = null;
    private modelManager: hiai.ModelManager | null = null;
    private isInitialized: boolean = false;

    // 初始化AI引擎
    async initialize(): Promise<boolean> {
        try {
            this.aiEngine = hiai.createAIEngine();
            this.modelManager = await this.aiEngine.getModelManager();
            
            // 加载预训练模型
            await this.loadModels();
            this.isInitialized = true;
            
            console.info('AI分析引擎初始化成功');
            return true;
        } catch (error) {
            console.error('AI分析引擎初始化失败:', error);
            return false;
        }
    }

    private async loadModels(): Promise<void> {
        const models = [
            {
                name: 'lung_nodule_detection',
                path: 'resources/lung_model.onnx',
                type: 'IMAGE_ANALYSIS'
            },
            {
                name: 'vital_signs_analysis',
                path: 'resources/vitals_model.onnx',
                type: 'DATA_ANALYSIS'
            }
        ];

        for (const modelConfig of models) {
            try {
                await this.modelManager?.loadModel(modelConfig);
                console.info(`模型加载成功: ${modelConfig.name}`);
            } catch (error) {
                console.error(`模型加载失败 ${modelConfig.name}:`, error);
            }
        }
    }

    // CT影像分析
    async analyzeCTImage(imageData: MedicalImageData): Promise<AIAnalysisResult> {
        if (!this.isInitialized) {
            throw new Error('AI引擎未初始化');
        }

        try {
            // 图像预处理
            const preprocessedData = await this.preprocessImage(imageData);
            
            // 模型推理
            const inferenceResult = await this.runInference(
                'lung_nodule_detection', 
                preprocessedData
            );
            
            // 结果后处理
            return this.postprocessResult(inferenceResult, imageData);
        } catch (error) {
            console.error('CT影像分析失败:', error);
            throw error;
        }
    }

    private async preprocessImage(imageData: MedicalImageData): Promise<any> {
        // DICOM数据解析和预处理
        const pixelData = this.parseDICOM(imageData.dicomData);
        
        // 标准化处理(Hounsfield单位转换)
        const normalizedData = this.normalizeHUValues(pixelData);
        
        // 重采样和尺寸调整
        return this.resampleImage(normalizedData, [128, 128, 128]);
    }

    private normalizeHUValues(pixelData: number[][]): number[][] {
        const MAX_HU = 1000; // Hounsfield单位最大值
        const MIN_HU = -1024;
        
        return pixelData.map(row =>
            row.map(pixel => (pixel - MIN_HU) / (MAX_HU - MIN_HU))
        );
    }

    private async runInference(modelName: string, inputData: any): Promise<any> {
        const inferenceConfig: hiai.InferenceConfig = {
            model: modelName,
            input: inputData,
            output: []
        };

        return new Promise((resolve, reject) => {
            this.aiEngine?.runInference(inferenceConfig, (err, result) => {
                if (err) {
                    reject(err);
                    return;
                }
                resolve(result);
            });
        });
    }

    // 生命体征趋势分析
    async analyzeVitalSignsTrends(vitalsData: VitalSigns[]): Promise<HealthTrend> {
        if (!this.isInitialized) {
            throw new Error('AI引擎未初始化');
        }

        try {
            const inputTensor = this.prepareVitalSignsInput(vitalsData);
            const inferenceResult = await this.runInference(
                'vital_signs_analysis', 
                inputTensor
            );
            
            return this.interpretVitalTrends(inferenceResult);
        } catch (error) {
            console.error('生命体征分析失败:', error);
            throw error;
        }
    }
}

医学影像查看器组件

支持DICOM的多功能影像查看
复制代码
// view/MedicalImageViewer.ets
@Component
export struct MedicalImageViewer {
    @Prop imageData: MedicalImageData;
    @State currentSlice: number = 0;
    @State windowLevel: number = 40;
    @State windowWidth: number = 400;
    @State showAnnotations: boolean = true;
    @State aiResults: AIAnalysisResult[] = [];

    private panZoomController: PanZoomController = new PanZoomController();

    build() {
        Column() {
            // 工具栏
            this.buildToolbar()
            
            // 影像显示区域
            Stack() {
                // DICOM图像渲染
                this.buildImageDisplay()
                
                // AI分析结果叠加层
                if (this.showAnnotations) {
                    this.buildAIOverlays()
                }
                
                // 测量工具
                this.buildMeasurementTools()
            }
            .layoutWeight(1)
            .gesture(this.panZoomController.gesture)
            
            // 切片控制条
            this.buildSliceController()
        }
        .height('100%')
        .backgroundColor('#000000')
    }

    @Builder
    buildToolbar() {
        Row() {
            // 窗宽窗位调节
            Slider({
                value: this.windowLevel,
                min: -1000,
                max: 1000
            })
            .onChange((value: number) => {
                this.windowLevel = value;
            })
            .width('30%')
            
            Slider({
                value: this.windowWidth, 
                min: 100,
                max: 2000
            })
            .onChange((value: number) => {
                this.windowWidth = value;
            })
            .width('30%')
            
            // 工具按钮
            Button('标注')
                .onClick(() => this.toggleAnnotations())
            
            Button('测量')
                .onClick(() => this.startMeasurement())
                
            Button('三维重建')
                .onClick(() => this.show3DReconstruction())
        }
        .padding(10)
        .backgroundColor('#333333')
    }

    @Builder
    buildImageDisplay() {
        Canvas(this.imageData.dicomData)
            .width('100%')
            .height('100%')
            .onReady(() => {
                this.applyWindowLevel();
            })
    }

    @Builder
    buildAIOverlays() {
        ForEach(this.aiResults, (result: AIAnalysisResult) => {
            if (result.sliceIndex === this.currentSlice) {
                Circle({ width: 8, height: 8 })
                    .fill(result.confidence > 0.8 ? '#FF0000' : '#FFFF00')
                    .position({ x: result.x * this.getScaleFactor(), 
                               y: result.y * this.getScaleFactor() })
                    .onClick(() => {
                        this.showResultDetails(result);
                    })
            }
        })
    }

    private applyWindowLevel(): void {
        // 应用窗宽窗位设置进行图像渲染
        const transferFunction = this.calculateTransferFunction();
        this.renderDICOMWithTransform(transferFunction);
    }

    private showResultDetails(result: AIAnalysisResult): void {
        // 显示AI分析详情弹窗
        AlertDialog.show({
            title: 'AI分析结果',
            message: `类型: ${result.type}\n置信度: ${(result.confidence * 100).toFixed(1)}%\n大小: ${result.size}mm`,
            primaryButton: {
                value: '临床参考',
                action: () => this.showClinicalReference(result)
            },
            secondaryButton: {
                value: '关闭',
                action: () => {}
            }
        });
    }
}

分布式健康数据管理

跨设备健康数据同步
复制代码
// service/HealthDataService.ets
import distributedData from '@ohos.data.distributedData';

export class HealthDataService {
    private kvManager: distributedData.KVManager | null = null;
    private kvStore: distributedData.KVStore | null = null;
    private syncStatus: boolean = false;

    // 初始化分布式数据库
    async initialize(): Promise<void> {
        try {
            const config: distributedData.KVManagerConfig = {
                bundleName: 'com.example.aihealth',
                userInfo: {
                    userId: 'defaultUser',
                    userType: distributedData.UserType.SAME_USER_ID
                }
            };

            this.kvManager = distributedData.createKVManager(config);
            
            // 创建健康数据存储
            this.kvStore = await this.kvManager.getKVStore('health_data', {
                createIfMissing: true,
                encrypt: true,
                backup: false,
                autoSync: true,
                kvStoreType: distributedData.KVStoreType.DEVICE_COLLABORATION
            });

            await this.startAutoSync();
            this.syncStatus = true;
            
        } catch (error) {
            console.error('健康数据服务初始化失败:', error);
        }
    }

    // 启动自动同步
    private async startAutoSync(): Promise<void> {
        if (!this.kvStore) return;

        try {
            // 设置同步策略
            await this.kvStore.setSyncPolicy(
                distributedData.SyncPolicy.PUSH_PULL,
                distributedData.Frequency.HIGH
            );

            // 监听同步状态
            this.kvStore.on('syncComplete', (data) => {
                console.info('数据同步完成:', data);
                this.notifyDataUpdate();
            });

            // 启动同步
            await this.kvStore.startSync();
        } catch (error) {
            console.error('启动自动同步失败:', error);
        }
    }

    // 保存健康记录
    async saveHealthRecord(record: HealthRecord): Promise<boolean> {
        if (!this.kvStore) return false;

        try {
            const recordKey = `health_record_${record.recordId}`;
            const recordData = JSON.stringify(record.toObject());
            
            await this.kvStore.put(recordKey, recordData);
            console.info('健康记录保存成功:', recordKey);
            return true;
        } catch (error) {
            console.error('保存健康记录失败:', error);
            return false;
        }
    }

    // 查询健康记录(支持跨设备查询)
    async queryHealthRecords(
        userId: string, 
        startTime: number, 
        endTime: number,
        dataType?: DataType
    ): Promise<HealthRecord[]> {
        if (!this.kvStore) return [];

        try {
            const query: distributedData.Query = distributedData.Query.createQuery();
            query.prefix('health_record_');
            
            const entries = await this.kvStore.getEntries(query);
            const records: HealthRecord[] = [];

            for (let i = 0; i < entries.length; i++) {
                const recordData = JSON.parse(entries[i].value as string);
                const record = new HealthRecord(recordData);
                
                // 时间过滤
                if (record.timestamp >= startTime && record.timestamp <= endTime) {
                    // 类型过滤
                    if (!dataType || record.dataType === dataType) {
                        // 用户过滤
                        if (record.userId === userId) {
                            records.push(record);
                        }
                    }
                }
            }

            // 按时间排序
            records.sort((a, b) => b.timestamp - a.timestamp);
            return records;
        } catch (error) {
            console.error('查询健康记录失败:', error);
            return [];
        }
    }

    // 获取健康趋势分析
    async getHealthTrends(
        userId: string, 
        days: number = 30
    ): Promise<HealthTrendAnalysis> {
        const endTime = new Date().getTime();
        const startTime = endTime - (days * 24 * 60 * 60 * 1000);
        
        const records = await this.queryHealthRecords(userId, startTime, endTime);
        return this.analyzeTrends(records);
    }

    private analyzeTrends(records: HealthRecord[]): HealthTrendAnalysis {
        const analysis: HealthTrendAnalysis = {
            overallRisk: RiskLevel.LOW,
            trends: new Map(),
            alerts: [],
            recommendations: []
        };

        // 按数据类型分组分析
        const groupedRecords = this.groupRecordsByType(records);
        
        groupedRecords.forEach((typeRecords, dataType) => {
            const trend = this.calculateTypeTrend(typeRecords, dataType);
            analysis.trends.set(dataType, trend);
            
            // 生成预警和建议
            if (trend.riskLevel === RiskLevel.HIGH || 
                trend.riskLevel === RiskLevel.CRITICAL) {
                analysis.alerts.push(...this.generateAlerts(trend, dataType));
            }
        });

        return analysis;
    }
}

健康预警与通知系统

智能预警规则引擎
复制代码
// service/AlertService.ets
import notification from '@ohos.notification';
import distributedNotification from '@ohos.distributedNotification';

export class AlertService {
    private alertRules: AlertRule[] = [];
    private distributedService: DistributedService;

    constructor() {
        this.loadDefaultRules();
        this.distributedService = new DistributedService();
    }

    // 加载默认预警规则
    private loadDefaultRules(): void {
        this.alertRules = [
            {
                id: 'critical_lab_result',
                name: '危急化验值预警',
                condition: (record: HealthRecord) => {
                    return record.riskLevel === RiskLevel.CRITICAL && 
                           record.dataType === DataType.LAB_RESULT;
                },
                priority: AlertPriority.CRITICAL,
                messageTemplate: '危急值预警: {description}',
                autoNotify: true
            },
            {
                id: 'vital_signs_abnormal',
                name: '生命体征异常',
                condition: (record: HealthRecord) => {
                    if (record.dataType === DataType.VITAL_SIGNS) {
                        const vitals = record.originalData as VitalSigns;
                        return vitals.heartRate > 120 || 
                               vitals.heartRate < 50 ||
                               vitals.spo2 < 90;
                    }
                    return false;
                },
                priority: AlertPriority.HIGH,
                messageTemplate: '生命体征异常: {description}',
                autoNotify: true
            },
            {
                id: 'trend_warning',
                name: '趋势异常预警', 
                condition: (trend: HealthTrend) => {
                    return trend.changeRate > 0.5 && trend.riskLevel === RiskLevel.HIGH;
                },
                priority: AlertPriority.MEDIUM,
                messageTemplate: '健康趋势异常: {description}',
                autoNotify: false
            }
        ];
    }

    // 检查记录并触发预警
    async checkAndAlert(record: HealthRecord): Promise<void> {
        for (const rule of this.alertRules) {
            if (rule.condition(record)) {
                await this.triggerAlert(rule, record);
            }
        }
    }

    // 触发预警通知
    private async triggerAlert(rule: AlertRule, record: HealthRecord): Promise<void> {
        const alertMessage = this.formatAlertMessage(rule.messageTemplate, record);
        
        // 本地通知
        await this.sendLocalNotification(rule, alertMessage, record);
        
        // 分布式通知(跨设备)
        if (rule.priority === AlertPriority.CRITICAL) {
            await this.sendDistributedAlert(rule, alertMessage, record);
        }

        // 记录预警日志
        await this.logAlertEvent(rule, record, alertMessage);
    }

    private async sendLocalNotification(
        rule: AlertRule, 
        message: string, 
        record: HealthRecord
    ): Promise<void> {
        try {
            const notificationRequest: notification.NotificationRequest = {
                id: Math.floor(Math.random() * 1000000),
                content: {
                    contentType: notification.ContentType.NOTIFICATION_TEXT,
                    normal: {
                        title: '健康预警',
                        text: message,
                        additionalText: `风险等级: ${rule.priority}`
                    }
                },
                slotType: notification.SlotType.OTHER_TYPES
            };

            await notification.publish(notificationRequest);
            console.info('本地通知发送成功:', message);
        } catch (error) {
            console.error('发送本地通知失败:', error);
        }
    }

    private async sendDistributedAlert(
        rule: AlertRule,
        message: string,
        record: HealthRecord
    ): Promise<void> {
        try {
            const distributedRequest: distributedNotification.NotificationRequest = {
                content: {
                    contentType: distributedNotification.ContentType.NOTIFICATION_TEXT,
                    normal: {
                        title: '跨设备健康预警',
                        text: message,
                        additionalText: '请立即查看'
                    }
                },
                devices: ['doctor-tablet', 'family-phone'], // 目标设备
                distribute: true
            };

            await distributedNotification.publish(distributedRequest);
            console.info('分布式预警发送成功');
        } catch (error) {
            console.error('发送分布式预警失败:', error);
        }
    }

    // 预警订阅管理
    async subscribeToAlerts(
        deviceId: string, 
        alertTypes: string[]
    ): Promise<boolean> {
        try {
            const subscription: AlertSubscription = {
                deviceId: deviceId,
                alertTypes: alertTypes,
                subscribeTime: new Date().getTime(),
                isActive: true
            };

            // 保存订阅信息到分布式数据
            await this.saveSubscription(subscription);
            
            // 启动预警推送
            await this.startAlertPush(deviceId, alertTypes);
            
            return true;
        } catch (error) {
            console.error('预警订阅失败:', error);
            return false;
        }
    }
}

多端适配的健康管理界面

响应式健康数据可视化
复制代码
// pages/HealthDashboard.ets
@Entry
@Component
struct HealthDashboard {
    @State currentTab: number = 0;
    @State healthTrends: HealthTrendAnalysis | null = null;
    @State recentRecords: HealthRecord[] = [];
    @State isLoading: boolean = true;

    private healthService: HealthDataService = new HealthDataService();

    async aboutToAppear() {
        await this.loadHealthData();
        this.isLoading = false;
    }

    async loadHealthData() {
        try {
            const [trends, records] = await Promise.all([
                this.healthService.getHealthTrends('current_user', 30),
                this.healthService.queryHealthRecords(
                    'current_user', 
                    Date.now() - (7 * 24 * 60 * 60 * 1000), 
                    Date.now()
                )
            ]);
            
            this.healthTrends = trends;
            this.recentRecords = records;
        } catch (error) {
            console.error('加载健康数据失败:', error);
        }
    }

    build() {
        Column() {
            // 顶部健康概览
            this.buildHealthOverview()
            
            // 标签页导航
            Tabs({ index: this.currentTab }) {
                TabContent() {
                    this.buildTrendsTab()
                }.tabBar('健康趋势')
                
                TabContent() {
                    this.buildRecordsTab()
                }.tabBar('最近记录')
                
                TabContent() {
                    this.buildAlertsTab()
                }.tabBar('预警信息')
            }
            .layoutWeight(1)
        }
    }

    @Builder
    buildHealthOverview() {
        Column() {
            // 健康评分卡片
            HealthScoreCard({ score: this.calculateHealthScore() })
            
            // 关键指标速览
            GridRow({ 
                columns: { sm: 4, md: 8, lg: 12 },
                breakpoints: { value: ['320vp', '600vp', '840vp'] }
            }) {
                GridCol({ span: { sm: 4, md: 4, lg: 3 } }) {
                    MetricCard({ 
                        title: '平均心率', 
                        value: '72', 
                        unit: 'bpm',
                        trend: 'stable'
                    })
                }
                
                GridCol({ span: { sm: 4, md: 4, lg: 3 } }) {
                    MetricCard({ 
                        title: '血氧饱和度', 
                        value: '98', 
                        unit: '%',
                        trend: 'up'
                    })
                }
                
                GridCol({ span: { sm: 4, md: 4, lg: 3 } }) {
                    MetricCard({ 
                        title: '今日步数', 
                        value: '8,542', 
                        unit: '步',
                        trend: 'up'
                    })
                }
                
                GridCol({ span: { sm: 4, md: 4, lg: 3 } }) {
                    MetricCard({ 
                        title: '睡眠质量', 
                        value: '87', 
                        unit: '分',
                        trend: 'stable'
                    })
                }
            }
        }
        .padding(16)
    }

    @Builder
    buildTrendsTab() {
        if (this.isLoading) {
            LoadingProgress()
        } else if (this.healthTrends) {
            Scroll() {
                Column() {
                    // 趋势图表
                    LineChart({
                        data: this.healthTrends.trends.get(DataType.VITAL_SIGNS)?.data || [],
                        title: '生命体征趋势'
                    })
                    
                    // 风险分布
                    RiskDistributionChart({
                        risks: Array.from(this.healthTrends.trends.values())
                    })
                    
                    // 健康建议
                    RecommendationList({
                        recommendations: this.healthTrends.recommendations
                    })
                }
            }
        }
    }

    private calculateHealthScore(): number {
        if (!this.healthTrends) return 0;
        
        let totalScore = 0;
        let weightSum = 0;
        
        this.healthTrends.trends.forEach((trend, dataType) => {
            const weight = this.getDataTypeWeight(dataType);
            const trendScore = this.calculateTrendScore(trend);
            
            totalScore += trendScore * weight;
            weightSum += weight;
        });
        
        return weightSum > 0 ? Math.round(totalScore / weightSum) : 0;
    }

    private getDataTypeWeight(dataType: DataType): number {
        const weights = {
            [DataType.VITAL_SIGNS]: 0.3,
            [DataType.LAB_RESULT]: 0.4,
            [DataType.ACTIVITY]: 0.2,
            [DataType.MEDICAL_IMAGE]: 0.1
        };
        
        return weights[dataType] || 0.1;
    }
}

性能优化与隐私保护

端侧AI推理优化策略
复制代码
// service/PerformanceOptimizer.ets
export class PerformanceOptimizer {
    private memoryPool: MemoryPool;
    private inferenceCache: Map<string, any> = new Map();
    private modelOptimizer: ModelOptimizer;

    constructor() {
        this.memoryPool = new MemoryPool();
        this.modelOptimizer = new ModelOptimizer();
    }

    // 模型量化与压缩
    async optimizeModel(modelPath: string): Promise<string> {
        try {
            const optimizedModel = await this.modelOptimizer.quantize({
                modelPath: modelPath,
                quantizationType: 'INT8',
                pruningRatio: 0.6,
                skipLayers: ['output']
            });
            
            return optimizedModel;
        } catch (error) {
            console.error('模型优化失败:', error);
            return modelPath; // 返回原始模型
        }
    }

    // 内存复用策略
    createTensorPool(bufferSize: number): TensorPool {
        return {
            allocate: (shape: number[]) => {
                return this.memoryPool.allocate(shape, bufferSize);
            },
            release: (tensor: any) => {
                this.memoryPool.release(tensor);
            }
        };
    }

    // 异步推理流水线
    async createInferencePipeline(): Promise<InferencePipeline> {
        const preprocessStage = new PipelineStage('preprocess');
        const inferenceStage = new PipelineStage('inference');
        const postprocessStage = new PipelineStage('postprocess');

        return {
            process: async (inputData: any) => {
                // 流水线并行处理
                const [preprocessed, inferenceResult] = await Promise.all([
                    preprocessStage.execute(inputData),
                    inferenceStage.execute(inputData)
                ]);

                return postprocessStage.execute({
                    preprocessed,
                    inferenceResult
                });
            }
        };
    }

    // 隐私保护数据处理
    applyPrivacyProtection(data: any, protectionLevel: PrivacyLevel): any {
        switch (protectionLevel) {
            case PrivacyLevel.HIGH:
                // 数据脱敏
                return this.anonymizeData(data);
            case PrivacyLevel.MEDIUM:
                // 差分隐私
                return this.addDifferentialPrivacy(data);
            case PrivacyLevel.LOW:
                // 基本加密
                return this.encryptData(data);
            default:
                return data;
        }
    }

    private anonymizeData(data: any): any {
        // 移除直接标识符
        const anonymized = { ...data };
        delete anonymized.userId;
        delete anonymized.deviceId;
        
        // 泛化处理
        if (anonymized.age) {
            anonymized.age = Math.floor(anonymized.age / 5) * 5; // 5岁分组
        }
        
        return anonymized;
    }
}

项目总结与扩展方向

本AI健康助手项目展示了HarmonyOS在医疗健康领域的强大应用潜力。通过本项目,你已掌握:

  1. 端侧AI医学影像分析的完整实现流程
  2. 分布式健康数据管理的跨设备同步机制
  3. 智能预警系统的规则引擎设计
  4. 多端适配的健康数据可视化方案
扩展功能建议
  • 联邦学习集成:在保护隐私的前提下实现多医院模型协同训练
  • 区块链存证:重要医疗数据的不可篡改存储
  • VR/AR可视化:医学影像的三维沉浸式查看
  • 智能语音助手:健康咨询的语音交互功能
  • 临床决策支持:基于大语言模型的诊断建议生成

这个项目为智慧医疗应用开发奠定了坚实基础,下一步可以探索更复杂的临床场景集成和商业化部署。

相关推荐
Aevget2 小时前
界面控件Telerik UI for WPF 2025 Q3亮点 - 集成AI编码助手
人工智能·ui·wpf·界面控件·ui开发·telerik
张人玉2 小时前
WPF 数据绑定与转换器详解
c#·wpf·light
爱笑的眼睛112 小时前
HarmonyOS NFC应用开发:构建分布式近场通信解决方案
华为·harmonyos
ccLianLian2 小时前
计算机视觉·TagCLIP
人工智能·算法
主宰者2 小时前
WPF CalcBinding简化判断逻辑
c#·.net·wpf
Aevget2 小时前
DevExpress WPF中文教程:Data Grid - 如何使用虚拟源?(五)
wpf·界面控件·devexpress·ui开发·.net 10
aneasystone本尊2 小时前
重温 Java 21 之虚拟线程
人工智能
geneculture2 小时前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学
这张生成的图像能检测吗2 小时前
(综述)基于深度学习的制造业表面缺陷检测图像合成方法综述
人工智能·计算机视觉·图像生成·工业检测·计算机图像学