提升大语言模型性能的关键技术清单(from 网络)

提升大语言模型性能的关键技术清单:

**• LoRA(低秩适配):**高效微调,节省计算资源

**• 量化(Quantization):**降低模型精度需求,显著减小模型体积

• **剪枝(Pruning):**剔除冗余参数,提升推理速度

**• 蒸馏(Distillation):**通过小模型学习大模型知识,实现轻量化

**• 权重共享(Weight Sharing):**减少参数数量,降低存储需求

**• Flash Attention:**优化注意力计算,提升内存利用与速度

**• KV-Cache 压缩:**缩减键值缓存,降低推理延迟

• **稀疏专家模型(Sparse MoE):**动态激活部分专家节点,极大提升效率

**• 梯度检查点(Gradient Checkpointing):**节省训练显存,支持更大模型

**• 混合精度训练(Mixed Precision Training):**兼顾速度与精度,降低硬件要求

**• 参数高效微调(Parameter-Efficient Fine-Tuning):**减少微调参数量,快速适配任务

**• 分片训练(Sharded Training):**分布式分片,突破单机内存瓶颈

**• CPU 卸载(CPU Offloading):**利用 CPU 辅助减轻 GPU 负担

**• 检索增强压缩(Retrieval-Augmented Compression):**结合外部知识库优化模型表现

**• 推测解码(Speculative Decoding):**提前预测,缩短生成时间

这些技术在实际应用中往往组合使用,单靠算法改进难以突破硬件瓶颈,需结合**硬件优化(如 DeepEP、DualPipe)**及性能指标(roofline 模型)进行系统设计,才能实现真正的"快"与"廉"。

深入掌握并灵活应用,才能在模型推理成本与速度间找到最佳平衡,推动大模型高效普及。

相关推荐
AI产品测评官4 分钟前
2025年深度观察:技术招聘的“数据孤岛”效应与AI智能体的破局之道
人工智能
Deepoch4 分钟前
面向AI算力瓶颈的光电混合计算路径探析
人工智能·光电·deepoc
m0_462605227 分钟前
第N9周:seq2seq翻译实战-Pytorch复现-小白版
人工智能·pytorch·python
百***243713 分钟前
GPT5.1 vs Gemini 3.0 Pro 全维度对比及快速接入实战
大数据·人工智能·gpt
乾元16 分钟前
基于时序数据的异常预测——短期容量与拥塞的提前感知
运维·开发语言·网络·人工智能·python·自动化·运维开发
Elastic 中国社区官方博客25 分钟前
Elasticsearch:构建一个 AI 驱动的电子邮件钓鱼检测
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
IT_陈寒26 分钟前
Vite 5大优化技巧:让你的构建速度飙升50%,开发者都在偷偷用!
前端·人工智能·后端
l1t30 分钟前
利用DeepSeek计算abcde五人排成一队,要使c在ab 之间,有几种排法
人工智能·组合数学·deepseek
阿拉斯攀登31 分钟前
电子签名:笔迹特征比对核心算法详解
人工智能·算法·机器学习·电子签名·汉王
说私域33 分钟前
基于开源链动2+1模式、AI智能名片与S2B2C商城小程序的运营创新研究
人工智能·小程序