提升大语言模型性能的关键技术清单(from 网络)

提升大语言模型性能的关键技术清单:

**• LoRA(低秩适配):**高效微调,节省计算资源

**• 量化(Quantization):**降低模型精度需求,显著减小模型体积

• **剪枝(Pruning):**剔除冗余参数,提升推理速度

**• 蒸馏(Distillation):**通过小模型学习大模型知识,实现轻量化

**• 权重共享(Weight Sharing):**减少参数数量,降低存储需求

**• Flash Attention:**优化注意力计算,提升内存利用与速度

**• KV-Cache 压缩:**缩减键值缓存,降低推理延迟

• **稀疏专家模型(Sparse MoE):**动态激活部分专家节点,极大提升效率

**• 梯度检查点(Gradient Checkpointing):**节省训练显存,支持更大模型

**• 混合精度训练(Mixed Precision Training):**兼顾速度与精度,降低硬件要求

**• 参数高效微调(Parameter-Efficient Fine-Tuning):**减少微调参数量,快速适配任务

**• 分片训练(Sharded Training):**分布式分片,突破单机内存瓶颈

**• CPU 卸载(CPU Offloading):**利用 CPU 辅助减轻 GPU 负担

**• 检索增强压缩(Retrieval-Augmented Compression):**结合外部知识库优化模型表现

**• 推测解码(Speculative Decoding):**提前预测,缩短生成时间

这些技术在实际应用中往往组合使用,单靠算法改进难以突破硬件瓶颈,需结合**硬件优化(如 DeepEP、DualPipe)**及性能指标(roofline 模型)进行系统设计,才能实现真正的"快"与"廉"。

深入掌握并灵活应用,才能在模型推理成本与速度间找到最佳平衡,推动大模型高效普及。

相关推荐
Codebee2 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º3 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys3 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56783 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144874 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile4 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5774 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥4 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造