PyTorch深度学习笔记(二十)(模型验证测试)

前言

到这一章节为止,依据小土堆课程的PyTorch深度学习笔记基础部分已经完结了,接下来将依据李沐动手学深度学习课程进行PyTorch深度学习笔记的进阶部分

预测图片

完整的模型验证(测试,demo)套路,利用已经训练好的模型,然后给它提供输入。

输入狗的图片,并打开

python 复制代码
image_path = "imgs/dog.png"
image = Image.open(image_path)

4通道的RGBA转为3通道的RGB图片

python 复制代码
image = image.convert("RGB")

转换图像格式并设定网络

python 复制代码
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

GPU上训练的东西映射到CPU上

python 复制代码
model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu'))

转为四维,符合网络输入需求

python 复制代码
image = torch.reshape(image,(1,3,32,32))

将模型转为测试类型

python 复制代码
model.eval()

不进行梯度计算,减少内存计算

python 复制代码
with torch.no_grad():
    output = model(image)

概率最大类别的输出

python 复制代码
print(output.argmax(1))

完整代码

python 复制代码
import torchvision
from PIL import Image
from torch import nn
import torch

image_path = "imgs/dog.png"
image = Image.open(image_path)
image = image.convert("RGB") 
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image,(1,3,32,32)) 
model.eval()
with torch.no_grad():
    output = model(image)
output = model(image)
print(output)
print(output.argmax(1)) 
相关推荐
AI视觉网奇4 分钟前
ue5 入门笔记
笔记·ue5
LaughingZhu6 分钟前
Product Hunt 每日热榜 | 2025-12-20
人工智能·经验分享·深度学习·神经网络·产品运营
love530love6 分钟前
Win11+RTX3090 亲测 · ComfyUI Hunyuan3D 全程实录 ②:nvdiffrast 源码编译实战(CUDA 13.1 零降级)
人工智能·windows·python·github·nvdiffrast
————A6 分钟前
强化学习---->多臂老虎机问题
人工智能
pingao1413788 分钟前
从数据到预警:自动雨量监测站如何用科技解码暴雨密码
人工智能·科技
undsky_13 分钟前
【n8n教程】:执行工作流——从手动测试到生产自动化
人工智能·ai·aigc·ai编程
牛客企业服务14 分钟前
牛客AI面试蓝领案例:破解制造业招聘效率困局
人工智能·面试·职场和发展
xqqxqxxq14 分钟前
Java 集合框架核心用法与实战技术笔记
java·笔记·python
oscar99915 分钟前
深度学习测试题与解析
人工智能·深度学习·测试题
Wis4e15 分钟前
基于PyTorch的深度学习——迁移学习4
pytorch·深度学习·迁移学习