PyTorch深度学习笔记(二十)(模型验证测试)

前言

到这一章节为止,依据小土堆课程的PyTorch深度学习笔记基础部分已经完结了,接下来将依据李沐动手学深度学习课程进行PyTorch深度学习笔记的进阶部分

预测图片

完整的模型验证(测试,demo)套路,利用已经训练好的模型,然后给它提供输入。

输入狗的图片,并打开

python 复制代码
image_path = "imgs/dog.png"
image = Image.open(image_path)

4通道的RGBA转为3通道的RGB图片

python 复制代码
image = image.convert("RGB")

转换图像格式并设定网络

python 复制代码
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

GPU上训练的东西映射到CPU上

python 复制代码
model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu'))

转为四维,符合网络输入需求

python 复制代码
image = torch.reshape(image,(1,3,32,32))

将模型转为测试类型

python 复制代码
model.eval()

不进行梯度计算,减少内存计算

python 复制代码
with torch.no_grad():
    output = model(image)

概率最大类别的输出

python 复制代码
print(output.argmax(1))

完整代码

python 复制代码
import torchvision
from PIL import Image
from torch import nn
import torch

image_path = "imgs/dog.png"
image = Image.open(image_path)
image = image.convert("RGB") 
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image,(1,3,32,32)) 
model.eval()
with torch.no_grad():
    output = model(image)
output = model(image)
print(output)
print(output.argmax(1)) 
相关推荐
量子-Alex1 天前
【大模型课程笔记】斯坦福大学CS336 课程环境配置与讲座生成完整指南
人工智能·笔记
冬奇Lab1 天前
一天一个开源项目(第9篇):NexaSDK - 跨平台设备端 AI 运行时,让前沿模型在本地运行
人工智能·开源
量子-Alex1 天前
【大模型技术报告】Qwen2-VL大模型训练过程理解
人工智能
土拨鼠烧电路1 天前
笔记04:价值链深度游:追踪一包纸巾的“数字一生”
笔记
java1234_小锋1 天前
【AI大模型舆情分析】微博舆情分析可视化系统(pytorch2+基于BERT大模型训练微调+flask+pandas+echarts) 实战(上)
人工智能·flask·大模型·bert
新缸中之脑1 天前
Imagerouter.io: 免费图像生成API
人工智能
MM_MS1 天前
Halcon图像点运算、获取直方图、直方图均衡化
图像处理·人工智能·算法·目标检测·计算机视觉·c#·视觉检测
阿杰学AI1 天前
AI核心知识77——大语言模型之Joint Training(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·rag·联合训练·joint training
DFT计算杂谈1 天前
VASP+PHONOPY+pypolymlpj计算不同温度下声子谱,附批处理脚本
java·前端·数据库·人工智能·python
BlackWolfSky1 天前
鸿蒙中级课程笔记12—应用质量建议与测试指南
笔记·华为·harmonyos