PyTorch深度学习笔记(二十)(模型验证测试)

前言

到这一章节为止,依据小土堆课程的PyTorch深度学习笔记基础部分已经完结了,接下来将依据李沐动手学深度学习课程进行PyTorch深度学习笔记的进阶部分

预测图片

完整的模型验证(测试,demo)套路,利用已经训练好的模型,然后给它提供输入。

输入狗的图片,并打开

python 复制代码
image_path = "imgs/dog.png"
image = Image.open(image_path)

4通道的RGBA转为3通道的RGB图片

python 复制代码
image = image.convert("RGB")

转换图像格式并设定网络

python 复制代码
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

GPU上训练的东西映射到CPU上

python 复制代码
model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu'))

转为四维,符合网络输入需求

python 复制代码
image = torch.reshape(image,(1,3,32,32))

将模型转为测试类型

python 复制代码
model.eval()

不进行梯度计算,减少内存计算

python 复制代码
with torch.no_grad():
    output = model(image)

概率最大类别的输出

python 复制代码
print(output.argmax(1))

完整代码

python 复制代码
import torchvision
from PIL import Image
from torch import nn
import torch

image_path = "imgs/dog.png"
image = Image.open(image_path)
image = image.convert("RGB") 
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),   
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

model = torch.load("model/tudui_29.pth",map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image,(1,3,32,32)) 
model.eval()
with torch.no_grad():
    output = model(image)
output = model(image)
print(output)
print(output.argmax(1)) 
相关推荐
love530love10 小时前
Windows 下 GCC 编译器安装与排错实录
人工智能·windows·python·gcc·msys2·gtk·msys2 mingw 64
倔强的石头10610 小时前
归纳偏好 —— 机器学习的 “择偶标准”
人工智能·机器学习
zhangshuang-peta10 小时前
通过MCP实现安全的多渠道人工智能集成
人工智能·ai agent·mcp·peta
听麟10 小时前
HarmonyOS 6.0+ APP AR文旅导览系统开发实战:空间定位与文物交互落地
人工智能·深度学习·华为·ar·wpf·harmonyos
-Springer-10 小时前
STM32 学习 —— 个人学习笔记5(EXTI 外部中断 & 对射式红外传感器及旋转编码器计数)
笔记·stm32·学习
AI_567810 小时前
阿里云OSS成本优化:生命周期规则+分层存储省70%
运维·数据库·人工智能·ai
龙山云仓10 小时前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
zxsz_com_cn10 小时前
设备预测性维护指的是什么 设备预测性维护传感器的作用
人工智能
可编程芯片开发10 小时前
基于PSO粒子群优化PI控制器的无刷直流电机最优控制系统simulink建模与仿真
人工智能·算法·simulink·pso·pi控制器·pso-pi
迎仔10 小时前
02-AI常见名词通俗解释
人工智能