langGraph通俗易懂的解释、langGraph和使用API直接调用LLM的区别

LangGraph 是一个基于图神经网络(GNN)和自然语言处理(NLP)技术的模型,旨在处理语言中的复杂关系和结构。简单来说,它是一个用于理解和分析语言结构的工具,可以用来处理文本数据中不同词汇或句子之间的关系。

1、如何理解 LangGraph?

  1. 图结构:在 LangGraph 中,文本被视为一个"图"。图由"节点"和"边"组成,节点代表文本中的单词或句子,边代表它们之间的关系。例如,在一句话中,某个单词可能会影响另一个单词的意义,这些影响就可以通过边来表示。

  2. 图神经网络(GNN):LangGraph 利用图神经网络的技术,通过信息在图中的传递和聚合来理解文本。这意味着,模型不仅仅看单个词的意义,还会关注词与词之间的关系,进而捕捉到更深层次的语义信息。

  3. 自然语言处理:传统的自然语言处理方法可能关注单词的顺序和局部上下文,而 LangGraph 通过图的结构更全面地理解文本,不仅看词汇的顺序,还能捕捉到词与词之间复杂的相互关系。

2、举个例子:

假设我们有句子:"我爱吃苹果。"传统的 NLP 方法可能只会关注"我"和"爱"之间的关系,或者"爱"和"吃"之间的关系。但 LangGraph 会通过构建一个图,考虑到"我"和"苹果"之间的关系,以及它们在句子中的相对位置。这样,LangGraph 能够更全面地理解句子的意思。

3、LangGraph 的优势:

  • 更好的语义理解:通过捕捉词与词之间的复杂关系,LangGraph 可以更深入地理解句子的含义。
  • 适用于多种语言任务:如文本分类、情感分析、机器翻译等,因为它能够同时处理局部信息和全局信息。
  • 更强的推理能力:它可以帮助模型进行更复杂的推理,而不仅仅是基于单个词的直接含义。

4、使用langGraph和使用API直接调用LLM,得到的结果有区别吗?

有区别!

1. 直接调用 LLM(比如 Gemini) 时给 LLM 的输入:

原始文本(prompt)。就是你直接输入给 LLM 的内容。例如:你输入一个问题,像是 "What is the capital of France?"。

2. 通过 LangGraph 给 LLM 的输入:

  • langGraph是,原始文本 输入到 LLM(Gemini),生成嵌入表示,然后这些嵌入表示作为图的节点进入图神经网络(GNN)进行进一步处理,处理结果再给LLM,然后LLM才处理生成最终结果。
  • 因此,最终输入是:原始文本(prompt)+图神经网络(GNN)处理结果

LangGraph 处理流程:

  • 原始文本输入到 LLM(如 Gemini):

你给定的 原始文本(例如一句话或问题)首先会被传递给 LLM(比如 Gemini)进行初步处理。

  • LLM 生成嵌入表示:

LLM(Gemini)会将原始文本转换成 嵌入表示(向量表示),这些表示包含了文本的语义信息和上下文信息。

  • 将嵌入表示作为图的节点:

这些嵌入表示会被用作 图的节点,LangGraph 会基于文本中的单词、短语或句子之间的关系,构建一个 图结构,图的 边 代表词语之间的关系(例如语法关系、语义关联等)。

  • 图神经网络(GNN)处理图结构:

图神经网络(GNN)会对这些节点的嵌入表示进行 传播和更新,从而增强对文本中复杂关系和语义的理解。这个步骤的目标是让模型捕捉到文本中深层次的依赖关系。

  • 最终结果传回 LLM 处理:

经由 GNN 处理后的图节点表示(增强后的嵌入表示),必然会被传入 LLM(Gemini)进行最终的推理和生成。此时,LLM 会基于这些经过图处理和增强的表示来生成最终的输出(如回答问题、生成文本等)。

以上即为全部内容,如果有不清楚的,欢迎在评论区讨论交流~

需要langGraph可直接运行代码请联系作者~

相关推荐
百***354840 分钟前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj6661 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...1 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手2 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式2 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元3 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI3 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来3 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型3 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网3 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动