Pytorch 学习之Transforms

文章目录

Transforms 的使用

py 复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")

image_path = "data/train/ants_image/0013035.jpg"
img =Image.open(image_path)
print(img)
# 将图片转换为 tensor 类型
tensor_trans=transforms.ToTensor()
tensor_img =tensor_trans(img)

writer.add_image("test",tensor_img)

writer.close()
print(tensor_img)


归一化

py 复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")

image_path = "data/train/ants_image/0013035.jpg"
img =Image.open(image_path)
print(img)
# 将图片转换为 tensor 类型
tensor_trans=transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("test",tensor_img)
writer.close()

#Normalize 归一化
print(tensor_img[0][0][0])
trans_norm=transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm=trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm)
writer.close()

Resize

c 复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")

image_path = "data/train/ants_image/0013035.jpg"
img =Image.open(image_path)
print(img)
# 将图片转换为 tensor 类型
tensor_trans=transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("test",tensor_img)
writer.close()

#Normalize 归一化
print(tensor_img[0][0][0])
trans_norm=transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm=trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm)
writer.close()

#Resize
print(img.size)
trans_size=transforms.Resize((512,512))
img_resize=trans_size(img)
#img_resize PIL ->ToTensor ->img tensor
img_resize=tensor_trans(img_resize)
print(img_resize)
writer.add_image("resize",img_resize,0)
writer.close()

trans_size_2 =transforms.Resize(512)
trans_compose =transforms.Compose([trans_size_2,tensor_trans])
img_resize_2=trans_compose(img)
writer.add_image("Resize",img_resize_2,0)
writer.close()

随机裁剪

c 复制代码
trans_random =transforms.RandomCrop(512)
trans_compose_2 = transforms.Compose([trans_random,tensor_trans])
for i in range(10):
    img_crop=trans_compose_2(img)
    writer.add_image("RandomCrop",img_crop,i)
writer.close()
相关推荐
星火开发设计13 分钟前
C++ queue 全面解析与实战指南
java·开发语言·数据结构·c++·学习·知识·队列
明月照山海-14 分钟前
机器学习周报三十
人工智能·机器学习·计算机视觉
kisshuan1239625 分钟前
YOLO11-RevCol_声呐图像多目标检测_人员水雷飞机船舶识别与定位
人工智能·目标检测·计算机视觉
lkbhua莱克瓦2432 分钟前
人工智能(AI)形象介绍
人工智能·ai
shangjian00733 分钟前
AI大模型-核心概念-深度学习
人工智能·深度学习
十铭忘35 分钟前
windows系统python开源项目环境配置1
人工智能·python
PeterClerk37 分钟前
RAG 评估入门:Recall@k、MRR、nDCG、Faithfulness
人工智能·深度学习·机器学习·语言模型·自然语言处理
All The Way North-44 分钟前
PyTorch从零实现CIFAR-10图像分类:保姆级教程,涵盖数据加载、模型搭建、训练与预测全流程
pytorch·深度学习·cnn·图像分类·实战项目·cifar-10·gpu加速
Generalzy1 小时前
langchain deepagent框架
人工智能·python·langchain
人工智能培训1 小时前
10分钟了解向量数据库(4)
人工智能·机器学习·数据挖掘·深度学习入门·深度学习证书·ai培训证书·ai工程师证书