Pytorch 学习之Transforms

文章目录

Transforms 的使用

py 复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")

image_path = "data/train/ants_image/0013035.jpg"
img =Image.open(image_path)
print(img)
# 将图片转换为 tensor 类型
tensor_trans=transforms.ToTensor()
tensor_img =tensor_trans(img)

writer.add_image("test",tensor_img)

writer.close()
print(tensor_img)


归一化

py 复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")

image_path = "data/train/ants_image/0013035.jpg"
img =Image.open(image_path)
print(img)
# 将图片转换为 tensor 类型
tensor_trans=transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("test",tensor_img)
writer.close()

#Normalize 归一化
print(tensor_img[0][0][0])
trans_norm=transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm=trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm)
writer.close()

Resize

c 复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")

image_path = "data/train/ants_image/0013035.jpg"
img =Image.open(image_path)
print(img)
# 将图片转换为 tensor 类型
tensor_trans=transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("test",tensor_img)
writer.close()

#Normalize 归一化
print(tensor_img[0][0][0])
trans_norm=transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm=trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm)
writer.close()

#Resize
print(img.size)
trans_size=transforms.Resize((512,512))
img_resize=trans_size(img)
#img_resize PIL ->ToTensor ->img tensor
img_resize=tensor_trans(img_resize)
print(img_resize)
writer.add_image("resize",img_resize,0)
writer.close()

trans_size_2 =transforms.Resize(512)
trans_compose =transforms.Compose([trans_size_2,tensor_trans])
img_resize_2=trans_compose(img)
writer.add_image("Resize",img_resize_2,0)
writer.close()

随机裁剪

c 复制代码
trans_random =transforms.RandomCrop(512)
trans_compose_2 = transforms.Compose([trans_random,tensor_trans])
for i in range(10):
    img_crop=trans_compose_2(img)
    writer.add_image("RandomCrop",img_crop,i)
writer.close()
相关推荐
思则变2 小时前
[图像处理]图像美化
图像处理·人工智能
常常不爱学习2 小时前
Vue3 + TypeScript学习
开发语言·css·学习·typescript·html
无水先生2 小时前
数据集预处理:规范化和标准化
人工智能·深度学习
August_._2 小时前
【MySQL】触发器、日志、锁机制 深度解析
java·大数据·数据库·人工智能·后端·mysql·青少年编程
磊磊落落2 小时前
使用 FastMCP 编写一个 MySQL MCP Server
人工智能
CandyU22 小时前
UE5 C++ 进阶学习 小知识点 —— 01 - 本地化语言
学习·ue5
零号机2 小时前
使用TRAE 30分钟极速开发一款划词中英互译浏览器插件
前端·人工智能
FunTester2 小时前
基于 Cursor 的智能测试用例生成系统 - 项目介绍与实施指南
人工智能·ai·大模型·测试用例·实践指南·curor·智能测试用例
SEO_juper3 小时前
LLMs.txt 创建指南:为大型语言模型优化您的网站
人工智能·ai·语言模型·自然语言处理·数字营销