LangChain提示词模版 PromptTemplate

0 什么是PromptTemplate

Prompt Template 是LangChain中的一个概念,接收用户输入,返回一个传递给LLM的信息(即提示词prompt)。

在应用开发中,固定的提示词限制了模型的灵活性和适用范围。所以,prompt template 是一个 模板化 的字符串 ,你可以将

变量插入到模板 中,从而创建出不同的提示。调用时:

  • 以 字典 作为输入,其中每个键代表要填充的提示模板中的变量。
  • 输出一个 PromptValue 。这个 PromptValue 可以传递给 LLM 或 ChatModel,并且还可以转换 为字符串或消息列表。

简单地说就是一个通过输入参数快速构造提示词模版的构造方法

1 构造PromptTemplate的两种方式

构造提示词模板有两种方式,一个是直接使用PromptTemplate 构造方法,另一个是通过其from_template()方法来生成

1.1 PromptTemplate构造方法

1.1.1 主要参数介绍
  • template:定义提示词模板的字符串,其中包含 文本 和 变量占位符(如{name}) ;
  • input_variables: 列表,指定了模板中使用的变量名称,在调用模板时被替换;
  • partial_variables:字典,用于定义模板中一些固定的变量名。这些值不需要再每次调用时被替换。
1.1.2 示例代码
python 复制代码
import os
import dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI

dotenv.load_dotenv()

os.environ["OPENAI_BASE_URL"] = os.getenv("QWEN_BASE_URL")
os.environ["OPENAI_API_KEY"] = os.getenv("QWEN_API_KEY")

# 获取对话模型
chat_model = ChatOpenAI(
    model="qwen-plus",
    streaming=True
)

template = PromptTemplate(
    template="说一个关于{topic}的笑话,不超过{max_len}字",
    input_variables=["topic"],
    partial_variables={"max_len": 100},
)

prompt = template.format(topic="猪")
# 调用模型
response = chat_model.stream(prompt)

print("提示词:", prompt)
# 流式输出
for chunk in response:
    print(chunk.content, end='', flush=True)
1.1.3 效果

1.2 调用from_template()

1.2.1 总结理解

相比使用PromptTemplate 构造函数的方式,该方式无需在构造方法中填写input_variables和partial_variables,只需填写模版字符串,对于初始化部分参数可以通过partial ()方法实现,注意,该方法也可以在使用PromptTemplate构造函数的方式中使用

1.2.2 示例代码
python 复制代码
import os
import dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI

dotenv.load_dotenv()

os.environ["OPENAI_BASE_URL"] = os.getenv("QWEN_BASE_URL")
os.environ["OPENAI_API_KEY"] = os.getenv("QWEN_API_KEY")

# 获取对话模型
chat_model = ChatOpenAI(
    model="qwen-plus",
    streaming=True
)

template = PromptTemplate.from_template("说一个关于{topic}的笑话,不超过{max_len}字").partial(max_len="100")

prompt = template.format(topic="牛")
# 调用模型
response = chat_model.stream(prompt)

print("提示词:", prompt)
# 流式输出
for chunk in response:
    print(chunk.content, end='', flush=True)
1.2.3 效果

2 format()调用和invoke()调用

2.1 format()和invoke()的使用规则

  • 只要对象是RunnableSerializable接口类型,都可以使用invoke(),替换前面使用format()的调用方式。
  • format(),返回值为字符串类型;
  • invoke(),返回值为PromptValue类型,接着调用to_string()返回字 符串。

总结一下就是format参数使用a="xx"的形式,invoke使用json形式传值

2.2 示例代码

python 复制代码
import os
import dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI

dotenv.load_dotenv()

os.environ["OPENAI_BASE_URL"] = os.getenv("QWEN_BASE_URL")
os.environ["OPENAI_API_KEY"] = os.getenv("QWEN_API_KEY")

# 获取对话模型
chat_model = ChatOpenAI(
    model="qwen-plus",
    streaming=True
)

template = PromptTemplate.from_template("说一个关于{topic}的笑话,不超过{max_len}字").partial(max_len="100")

prompt = template.invoke({"topic": '鸡'})
# 调用模型
response = chat_model.stream(prompt)

print("提示词:", prompt)
# 流式输出
for chunk in response:
    print(chunk.content, end='', flush=True)

2.3 效果

相关推荐
2401_8384725142 分钟前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python
CoLiuRs1 小时前
语义搜索系统原理与实现
redis·python·向量·es
zhihuaba1 小时前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
u0109272711 小时前
Python Web爬虫入门:使用Requests和BeautifulSoup
jvm·数据库·python
Stream_Silver2 小时前
【Agent学习笔记3:使用Python开发简单MCP服务】
笔记·python
穿过锁扣的风2 小时前
零基础入门 Python 爬虫:从基础到实战,爬取虎扑 / 豆瓣 / 图片全掌握
开发语言·爬虫·python
Stream_Silver2 小时前
【Agent学习笔记2:深入理解Function Calling技术:从原理到实践】
笔记·python
love530love2 小时前
技术复盘:llama-cpp-python CUDA 编译实战 (Windows)
人工智能·windows·python·llama·aitechlab·cpp-python·cuda版本
逄逄不是胖胖3 小时前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
橘颂TA3 小时前
【测试】自动化测试函数介绍——web 测试
python·功能测试·selenium·测试工具·dubbo