23.目标检测基础

1.边缘框实现

python 复制代码
import matplotlib.pyplot as plt
import torch
def box_corner_to_center(boxes):
    x1,y1,x2,y2=boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    cx=(x1+x2)/2
    cy=(y1+y2)/2
    w=x2-x1
    h=y2-y1
    boxes=torch.stack((cx,cy,w,h),axis=-1)
    return boxes
def box_center_to_corner(boxes):
    cx,cy,w,h=boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    x1=cx-0.5*w
    y1=cy-0.5*h
    x2=cx+0.5*w
    y2=cy+0.5*h
    boxes=torch.stack((x1,y1,x2,y2),axis=-1)
    return boxes
def bbox_to_rect(bbox, color):
    # 将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
    # ((左上x,左上y),宽,高)
    return plt.Rectangle(
        xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
        fill=False, edgecolor=color, linewidth=2)
dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]
# boxes=torch.tensor((dog_bbox,cat_bbox))
# box_center_to_corner(box_corner_to_center(boxes))==boxes
img = plt.imread('../img/catdog.jpg')
fig = plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'))

2.目标检测数据集加载

python 复制代码
import os
import pandas as pd
import torch
import torchvision
import matplotlib.pyplot as plt
from matplotlib import patches
def read_data_bananas(is_train=True):
    """读取香蕉检测数据集中的图像和标签"""
    data_dir = r"/data/Public/Datasets/d2l-limu/banana-detection"
    csv_fname = os.path.join(data_dir, 'bananas_train' if is_train else 'bananas_val', 'label.csv')
    csv_data = pd.read_csv(csv_fname)
    csv_data = csv_data.set_index('img_name')
    images, targets = [], []
    for img_name, target in csv_data.iterrows():
        images.append(torchvision.io.read_image(
            os.path.join(data_dir, 'bananas_train' if is_train else
                         'bananas_val', 'images', f'{img_name}')))
        # 这里的target包含(类别,左上角x,左上角y,右下角x,右下角y),
        # 其中所有图像都具有相同的香蕉类(索引为0)
        targets.append(list(target))
    return images, torch.tensor(targets).unsqueeze(1) / 256


class BananasDataset(torch.utils.data.Dataset):
    """一个用于加载香蕉检测数据集的自定义数据集"""
    def __init__(self, is_train):
        self.features, self.labels = read_data_bananas(is_train)
        print('read ' + str(len(self.features)) + (f' training examples' if
              is_train else f' validation examples'))

    def __getitem__(self, idx):
        return (self.features[idx].float(), self.labels[idx])

    def __len__(self):
        return len(self.features)

def load_data_bananas(batch_size):
    """加载香蕉检测数据集"""
    train_iter = torch.utils.data.DataLoader(BananasDataset(is_train=True),
                                             batch_size, shuffle=True)
    val_iter = torch.utils.data.DataLoader(BananasDataset(is_train=False),
                                           batch_size)
    return train_iter, val_iter

batch_size, edge_size = 32, 256
train_iter, _ = load_data_bananas(batch_size)
batch = next(iter(train_iter))
imgs = (batch[0][0:10].permute(0, 2, 3, 1)) / 255
fig, axes = plt.subplots(2, 5, figsize=(14, 5))
for i, ax in enumerate(axes.flatten()):
    ax.imshow(imgs[i])  
    ax.axis('off')
    bbox = batch[1][i][0][1:5] * 256  
    rect = patches.Rectangle(
        (bbox[0], bbox[1]),  
        bbox[2] - bbox[0],   
        bbox[3] - bbox[1],    
        linewidth=2,
        edgecolor='r',
        facecolor='none'
    )
    ax.add_patch(rect) 
plt.tight_layout()
plt.show()

3.瞄框生成绘图

python 复制代码
%matplotlib inline
import torch
import matplotlib.patches as patches
torch.set_printoptions(2)
##############################################################################################################
#生成大量的瞄框数量:
#首先是按照不同的像素为中心进行瞄框生成
def multibox_prior(data, sizes, ratios):
    """生成以每个像素为中心具有不同形状的锚框"""
    in_height, in_width = data.shape[-2:]
    device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
    boxes_per_pixel = (num_sizes + num_ratios - 1)
    size_tensor = torch.tensor(sizes, device=device)
    ratio_tensor = torch.tensor(ratios, device=device)

    # 为了将锚点移动到像素的中心,需要设置偏移量。
    # 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
    offset_h, offset_w = 0.5, 0.5
    steps_h = 1.0 / in_height  # 在y轴上缩放步长
    steps_w = 1.0 / in_width  # 在x轴上缩放步长

    # 生成锚框的所有中心点
    center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
    center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
    shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')
    shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)

    # 生成"boxes_per_pixel"个高和宽,
    # 之后用于创建锚框的四角坐标(xmin,xmax,ymin,ymax)
    w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
                   sizes[0] * torch.sqrt(ratio_tensor[1:])))\
                   * in_height / in_width  # 处理矩形输入
    h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
                   sizes[0] / torch.sqrt(ratio_tensor[1:])))
    # 除以2来获得半高和半宽
    anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
                                        in_height * in_width, 1) / 2

    # 每个中心点都将有"boxes_per_pixel"个锚框,
    # 所以生成含所有锚框中心的网格,重复了"boxes_per_pixel"次
    out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
                dim=1).repeat_interleave(boxes_per_pixel, dim=0)
    output = out_grid + anchor_manipulations
    return output.unsqueeze(0)
##############################################################################################################
#边界框绘图:
#一个像素点可以生成n+m-1个瞄框:
def show_bboxes(axes, bboxes, labels=None, colors=None):
    """显示所有边界框"""
    def _make_list(obj, default_values=None):
        if obj is None:
            obj = default_values
        elif not isinstance(obj, (list, tuple)):
            obj = [obj]
        return obj

    labels = _make_list(labels)
    colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        x_min, y_min, x_max, y_max = bbox.detach().numpy()
        rect = patches.Rectangle(
            (x_min, y_min),  
            x_max - x_min,   
            y_max - y_min,  
            linewidth=2,
            edgecolor=color,
            facecolor='none'
        )
        axes.add_patch(rect)
        if labels and len(labels) > i:
            text_color = 'k' if color == 'w' else 'w'
            axes.text(rect.xy[0], rect.xy[1], labels[i],
                      va='center', ha='center', fontsize=9, color=text_color,
                      bbox=dict(facecolor=color, lw=0))
##############################################################################################################
img = plt.imread('../img/catdog.jpg')
h, w = img.shape[:2]
print(h, w)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]
bbox_scale = torch.tensor((w, h, w, h))
fig = plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,
            ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
             's=0.75, r=0.5'])
##############################################################################################################

3.真实标注框分配瞄框

python 复制代码
import torch
import matplotlib.patches as patches
torch.set_printoptions(2)
##############################################################################################################
#计算对应的IoU:|A^B|/|AUB|
def box_iou(boxes1, boxes2):
    """计算两个锚框或边界框列表中成对的交并比"""
    box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
                              (boxes[:, 3] - boxes[:, 1]))
    # boxes1,boxes2,areas1,areas2的形状:
    # boxes1:(boxes1的数量,4),
    # boxes2:(boxes2的数量,4),
    # areas1:(boxes1的数量,),
    # areas2:(boxes2的数量,)
    areas1 = box_area(boxes1)
    areas2 = box_area(boxes2)
    # inter_upperlefts,inter_lowerrights,inters的形状:
    # (boxes1的数量,boxes2的数量,2)
    #对比交叉区域的高度和宽度:
    inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
    inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
    inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
    # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
    inter_areas = inters[:, :, 0] * inters[:, :, 1]
    union_areas = areas1[:, None] + areas2 - inter_areas
    return inter_areas / union_areas
##############################################################################################################
#将真是边界框分给瞄框:
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
    """将最接近的真实边界框分配给锚框"""
    num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
    # 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoU
    jaccard = box_iou(anchors, ground_truth)
    # 对于每个锚框,分配的真实边界框的张量
    anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,
                                  device=device)
    # 根据阈值,决定是否分配真实边界框
    max_ious, indices = torch.max(jaccard, dim=1)
    anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)
    box_j = indices[max_ious >= iou_threshold]
    anchors_bbox_map[anc_i] = box_j
    col_discard = torch.full((num_anchors,), -1)
    row_discard = torch.full((num_gt_boxes,), -1)
    for _ in range(num_gt_boxes):
        max_idx = torch.argmax(jaccard)
        box_idx = (max_idx % num_gt_boxes).long()
        anc_idx = (max_idx / num_gt_boxes).long()
        anchors_bbox_map[anc_idx] = box_idx
        jaccard[:, box_idx] = col_discard
        jaccard[anc_idx, :] = row_discard
    return anchors_bbox_map
def box_corner_to_center(boxes):
    x1,y1,x2,y2=boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    cx=(x1+x2)/2
    cy=(y1+y2)/2
    w=x2-x1
    h=y2-y1
    boxes=torch.stack((cx,cy,w,h),axis=-1)
    return boxes
def box_center_to_corner(boxes):
    cx,cy,w,h=boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    x1=cx-0.5*w
    y1=cy-0.5*h
    x2=cx+0.5*w
    y2=cy+0.5*h
    boxes=torch.stack((x1,y1,x2,y2),axis=-1)
    return boxes
def offset_boxes(anchors, assigned_bb, eps=1e-6):
    """对锚框偏移量的转换"""
    c_anc = box_corner_to_center(anchors)
    c_assigned_bb = box_corner_to_center(assigned_bb)
    offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
    offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
    offset = torch.cat([offset_xy, offset_wh], axis=1)
    return offset
##############################################################################################################
def multibox_target(anchors, labels):
    """使用真实边界框标记锚框"""
    batch_size, anchors = labels.shape[0], anchors.squeeze(0)
    batch_offset, batch_mask, batch_class_labels = [], [], []
    device, num_anchors = anchors.device, anchors.shape[0]
    for i in range(batch_size):
        label = labels[i, :, :]
        anchors_bbox_map = assign_anchor_to_bbox(
            label[:, 1:], anchors, device)
        bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(
            1, 4)
        # 将类标签和分配的边界框坐标初始化为零
        class_labels = torch.zeros(num_anchors, dtype=torch.long,
                                   device=device)
        assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,
                                  device=device)
        # 使用真实边界框来标记锚框的类别。
        # 如果一个锚框没有被分配,标记其为背景(值为零)
        indices_true = torch.nonzero(anchors_bbox_map >= 0)
        bb_idx = anchors_bbox_map[indices_true]
        class_labels[indices_true] = label[bb_idx, 0].long() + 1
        assigned_bb[indices_true] = label[bb_idx, 1:]
        # 偏移量转换
        offset = offset_boxes(anchors, assigned_bb) * bbox_mask
        batch_offset.append(offset.reshape(-1))
        batch_mask.append(bbox_mask.reshape(-1))
        batch_class_labels.append(class_labels)
    bbox_offset = torch.stack(batch_offset)
    bbox_mask = torch.stack(batch_mask)
    class_labels = torch.stack(batch_class_labels)
    return (bbox_offset, bbox_mask, class_labels)
##############################################################################################################
ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
                         [1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
                    [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
                    [0.57, 0.3, 0.92, 0.9]])

fig = plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4'])
##############################################################################################################

4.非极大值抑制预测边界框

python 复制代码
import torch
import matplotlib.patches as patches
torch.set_printoptions(2)
##############################################################################################################
def box_corner_to_center(boxes):
    x1,y1,x2,y2=boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    cx=(x1+x2)/2
    cy=(y1+y2)/2
    w=x2-x1
    h=y2-y1
    boxes=torch.stack((cx,cy,w,h),axis=-1)
    return boxes
def box_center_to_corner(boxes):
    cx,cy,w,h=boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    x1=cx-0.5*w
    y1=cy-0.5*h
    x2=cx+0.5*w
    y2=cy+0.5*h
    boxes=torch.stack((x1,y1,x2,y2),axis=-1)
    return boxes
def offset_inverse(anchors, offset_preds):
    """根据带有预测偏移量的锚框来预测边界框"""
    anc = box_corner_to_center(anchors)
    pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]
    pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]
    pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1)
    predicted_bbox = box_center_to_corner(pred_bbox)
    return predicted_bbox
##############################################################################################################
def nms(boxes, scores, iou_threshold):
    """对预测边界框的置信度进行排序"""
    B = torch.argsort(scores, dim=-1, descending=True)
    keep = []  # 保留预测边界框的指标
    while B.numel() > 0:
        i = B[0]
        keep.append(i)
        if B.numel() == 1: break
        iou = box_iou(boxes[i, :].reshape(-1, 4),
                      boxes[B[1:], :].reshape(-1, 4)).reshape(-1)
        inds = torch.nonzero(iou <= iou_threshold).reshape(-1)
        B = B[inds + 1]
    return torch.tensor(keep, device=boxes.device)
##############################################################################################################
def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5,
                       pos_threshold=0.009999999):
    """使用非极大值抑制来预测边界框"""
    device, batch_size = cls_probs.device, cls_probs.shape[0]
    anchors = anchors.squeeze(0)
    num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2]
    out = []
    for i in range(batch_size):
        cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4)
        conf, class_id = torch.max(cls_prob[1:], 0)
        predicted_bb = offset_inverse(anchors, offset_pred)
        keep = nms(predicted_bb, conf, nms_threshold)

        # 找到所有的non_keep索引,并将类设置为背景
        all_idx = torch.arange(num_anchors, dtype=torch.long, device=device)
        combined = torch.cat((keep, all_idx))
        uniques, counts = combined.unique(return_counts=True)
        non_keep = uniques[counts == 1]
        all_id_sorted = torch.cat((keep, non_keep))
        class_id[non_keep] = -1
        class_id = class_id[all_id_sorted]
        conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted]
        # pos_threshold是一个用于非背景预测的阈值
        below_min_idx = (conf < pos_threshold)
        class_id[below_min_idx] = -1
        conf[below_min_idx] = 1 - conf[below_min_idx]
        pred_info = torch.cat((class_id.unsqueeze(1),
                               conf.unsqueeze(1),
                               predicted_bb), dim=1)
        out.append(pred_info)
    return torch.stack(out)
##############################################################################################################
anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
                      [0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0] * anchors.numel())
cls_probs = torch.tensor([[0] * 4,  # 背景的预测概率
                      [0.9, 0.8, 0.7, 0.1],  # 狗的预测概率
                      [0.1, 0.2, 0.3, 0.9]])  # 猫的预测概率
fig = plt.figure(figsize=(10, 5))
ax1 = fig.add_subplot(1, 2, 1)
ax1.imshow(img)
ax1.set_title("Original Image")
# 绘制原始图像的边界框
show_bboxes(ax1, anchors * bbox_scale,
            ['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])
#第二张子图:利用非极大值抑制筛选框:
ax2 = fig.add_subplot(1, 2, 2)
ax2.imshow(img)
ax2.set_title("With Bounding Boxes")
output = multibox_detection(cls_probs.unsqueeze(dim=0),
                            offset_preds.unsqueeze(dim=0),
                            anchors.unsqueeze(dim=0),
                            nms_threshold=0.5)
for i in output[0].detach().numpy():
    if i[0] == -1:
        continue
    label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
    show_bboxes(ax2, [torch.tensor(i[2:]) * bbox_scale], label)
plt.tight_layout()
plt.show()
##############################################################################################################
相关推荐
逻极2 小时前
Kiro 安全最佳实践:守护代理式 IDE 的 “防火墙”
ide·人工智能·安全·ai
不要喷香水2 小时前
26.java openCV4.x 入门-Imgproc之图像尺寸调整与区域提取
java·人工智能·opencv·计算机视觉
央链知播2 小时前
何超谈“AI元宇宙将引领场景革命 “十五五”勾勒科技新蓝图”
人工智能·科技
CV视觉2 小时前
AI 实战篇:用 LangGraph 串联 RAG+MCP Server,打造能直接操控 Jira 的智能体
人工智能·深度学习·机器学习·自然语言处理·langchain·prompt·jira
骄傲的心别枯萎2 小时前
RV1126 NO.42:OPENCV形态学基础之一:膨胀
人工智能·opencv·计算机视觉
亚马逊云开发者2 小时前
Agentic AI基础设施实践经验系列(五):Agent应用系统中的身份认证与授权管理
人工智能
爱编程的鱼2 小时前
ESLint 是什么?
开发语言·网络·人工智能·网络协议
星光一影2 小时前
Spring Boot 3+Spring AI 打造旅游智能体!集成阿里云通义千问,多轮对话 + 搜索 + PDF 生成撑全流程
人工智能·spring boot·spring
IT_陈寒2 小时前
Vite性能优化实战:5个被低估的配置让你的开发效率提升50%
前端·人工智能·后端