OSTrack视频单目标跟踪

项目框架

缺点:无法实现移出画面时自动定位到原位置

本地运行脚本:

python 复制代码
# run_local_video_roi.py
import sys
import os
import time
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

import cv2
import torch
import numpy as np

from lib.test.parameter.ostrack import parameters
from lib.test.tracker.ostrack import OSTrack

class OSTrackDemo:
    def __init__(self, yaml_name="vitb_256_mae_ce_32x4_ep300", 
                 model_path="pretrained/OSTrack-256.pth.tar", 
                 use_gpu=True):
        self.device = "cuda" if (use_gpu and torch.cuda.is_available()) else "cpu"
        print(f"[INFO] Device: {self.device}")
        
        params = parameters(yaml_name)
        params.debug = getattr(params, 'debug', False)
        params.save_all_boxes = getattr(params, 'save_all_boxes', False)
        params.checkpoint = model_path
        
        print(f"[INFO] Using model: {params.checkpoint}")
        self.tracker = OSTrack(params, dataset_name="demo")
        self.tracker.network.to(self.device)
        self.initialized = False

    def initialize(self, image, bbox):
        """
        bbox: [x, y, w, h] in original image coordinates
        """
        self.tracker.initialize(image, {'init_bbox': list(bbox)})
        self.initialized = True

    def track(self, image):
        if not self.initialized:
            return None, 0
        start_time = time.time()
        out = self.tracker.track(image)
        print('out:',out)
        elapsed_ms = (time.time() - start_time) * 1000
        return out['target_bbox'], elapsed_ms

def main():
    # ====== 默认配置 ======
    VIDEO_PATH = "video_test/test11.mp4"
    MODEL_PATH = "pretrained/OSTrack-256.pth.tar"
    YAML_NAME = "vitb_256_mae_ce_32x4_ep300"
    USE_GPU = True

    # 检查文件
    assert os.path.exists(VIDEO_PATH), f"Video not found: {VIDEO_PATH}"
    assert os.path.exists(MODEL_PATH), f"Model not found: {MODEL_PATH}"

    demo = OSTrackDemo(yaml_name=YAML_NAME, model_path=MODEL_PATH, use_gpu=USE_GPU)

    cap = cv2.VideoCapture(VIDEO_PATH)
    ret, frame = cap.read()
    if not ret:
        print("[ERROR] Cannot read video")
        return

    # === 使用 cv2.selectROI 选择目标 ===
    print("👉 Please draw a bounding box around the target object.")
    print("   - Press ENTER or SPACE to confirm")
    print("   - Press C to cancel")
    print("   - Press ESC to exit")
    
    cv2.namedWindow("Select ROI", cv2.WINDOW_NORMAL)
    bbox = cv2.selectROI("Select ROI", frame, fromCenter=False)
    cv2.destroyAllWindows()

    if bbox[2] == 0 or bbox[3] == 0:
        print("[INFO] No valid ROI selected. Exiting.")
        return

    print(f"[INFO] Selected ROI: x={bbox[0]}, y={bbox[1]}, w={bbox[2]}, h={bbox[3]}")
    demo.initialize(frame, bbox)

    # 跟踪主循环
    frame_count = 0
    while True:
        ret, frame = cap.read()
        if not ret:
            break

        bbox, elapsed_ms = demo.track(frame)

        if bbox is not None:
            x, y, w, h = map(int, bbox)
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
            cx, cy = x + w // 2, y + h // 2
            cv2.circle(frame, (cx, cy), 4, (0, 255, 0), -1)
            cv2.putText(frame, f"Tracking ({cx}, {cy})", (10, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
        else:
            cv2.putText(frame, "LOST", (10, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

        cv2.putText(frame, f"Frame: {frame_count}", (10, 60),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
        cv2.putText(frame, f"Time: {elapsed_ms:.1f} ms", (10, 90),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)

        cv2.imshow("OSTrack Demo", frame)
        frame_count += 1

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()
    print("[INFO] Done.")


if __name__ == "__main__":
    main()
相关推荐
说私域2 小时前
基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的私域用户池构建与运营研究
人工智能·小程序
海边夕阳20062 小时前
【每日一个AI小知识】:什么是多模态AI?
人工智能
songyuc4 小时前
【S2ANet】Align Deep Features for Oriented Object Detection 译读笔记
人工智能·笔记·目标检测
asdfg12589634 小时前
DETR:新一代目标检测范式综述
人工智能·目标检测·目标跟踪
doubao365 小时前
如何有效降低AIGC生成内容被识别的概率?
人工智能·深度学习·自然语言处理·aigc·ai写作
SEO_juper5 小时前
AEO终极指南:步步为营,提升内容的AI可见性
人工智能·ai·seo·数字营销·aeo
机器之心7 小时前
李飞飞最新长文:AI的下一个十年——构建真正具备空间智能的机器
人工智能·openai
机器之心7 小时前
豆包编程模型来了,我们用四个关卡考了考它!
人工智能·openai
阿里云大数据AI技术7 小时前
让 ETL 更懂语义:DataWorks 支持数据集成 AI 辅助处理能力
人工智能·阿里云·dataworks·ai辅助