deep learning简介

做deep learning的步骤

(1)定义一组模型;

(2)定义评估函数;

(3)寻找最好的模型;

神经元网络

这里的function就是神经元网络

考虑我们的logic regression,把多个logic regression叠在一起,就组成了一个神经元网络,单个logic regression就是一个神经元

可以使用不同的方法来连接这些神经元,从而得到不同结构的神经网络,而所有的logic regression的w,b参数的合集,就是这个神经网络的参数

一个经典的连接方式是:全连接前馈网络,也叫多层感知机。

全连接:指的是网络中相邻两层之间的神经元是两两相连的。也就是说,第N层的每一个神经元都连接到第N+1层的每一个神经元。这是最经典、最密集的连接方式。

前馈:指的是数据在网络中的流动是单向的,从输入层开始,逐层传递到输出层。网络中没有循环或反馈连接。

把多个神经元排成多列,每一列叫做一层,每一层的输入个数叫作该层的维度

严格上没有输入层,为了统一描述,叫作输入层,输出层是最后一层Logic regression的合集,中间的叫隐藏层

我们从输入到输出的运算可以写成矩阵运算的式子,矩阵运算可以通过GPU进行加速

把输入层到输出层之间的隐藏层看作一个整体,他们在里面做的是特征变换的工作,相当于把输入特征经过一系列变换,最终得到一组特征用来给输出层用

整个神经网络的好坏如何评估,根据前面逻辑回归的结论,可以使用output前的结果与output后的结果做交叉熵作为损失函数,令交叉熵最小

假设第一笔数据x1x^1x1算出来交叉熵为C1C^1C1,第二笔数据x2x^2x2算出来交叉熵为C2C^2C2,那么总的交叉熵之和就是整个网络的损失函数

我们要做的事情就是在模型集合里面找到一个模型使得损失最小,或者说找到一组参数θ\thetaθ使得loss最小

要找到这样一组参数,用的也是梯度下降的方法

这里的梯度集合就是对所有参数分别做偏微分的集合,由于涉及到大量微分计算,反向传播是一种有效的计算微分的方式,现在有很多工具,像tensorflow,pytorch等,可以用来计算微分

一些资料:

相关推荐
robot_learner6 小时前
OpenClaw, 突然走红的智能体
人工智能
ujainu小6 小时前
CANN仓库内容深度解读:昇腾AI生态的基石与AIGC发展的引擎
人工智能·aigc
rcc86286 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠6 小时前
【无标题】
人工智能·深度学习·机器学习
callJJ6 小时前
Spring AI 文本聊天模型完全指南:ChatModel 与 ChatClient
java·大数据·人工智能·spring·spring ai·聊天模型
是店小二呀6 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
冻感糕人~6 小时前
收藏备用|小白&程序员必看!AI Agent入门详解(附工业落地实操关联)
大数据·人工智能·架构·大模型·agent·ai大模型·大模型学习
予枫的编程笔记7 小时前
【Linux入门篇】Ubuntu和CentOS包管理不一样?apt与yum对比实操,看完再也不混淆
linux·人工智能·ubuntu·centos·linux包管理·linux新手教程·rpm离线安装
陈西子在网上冲浪7 小时前
当全国人民用 AI 点奶茶时,你的企业官网还在“人工建站”吗?
人工智能
victory04317 小时前
hello_agent第九章总结
人工智能·agent