神经 网络

笔记记录
层次
复制代码
全连接层
卷积层
池化层
批量规范化层
激活函数
丢弃层
经典模型
复制代码
LeNet
AlexNet
VGG
Nin
GoogleNet
ResNet
DenseNet

神经网络层的主要类别

python 复制代码
    "基础结构层": ["全连接层", "卷积层", "池化层"],
    "序列处理层": ["RNN", "LSTM", "GRU", "Transformer"],
    "归一化层": ["BatchNorm", "LayerNorm", "InstanceNorm"],
    "正则化层": ["Dropout", "DropPath"],
    "注意力机制": ["自注意力", "交叉注意力", "多头注意力"],
    "嵌入层": ["词嵌入", "位置编码"],
    "激活函数": ["ReLU", "Sigmoid", "Tanh", "Softmax"],
    "特殊连接": ["残差连接", "跳跃连接"],
    "采样层": ["上采样", "下采样", "转置卷积"]

神经网络经典架构时间线

python 复制代码
    "2012": ["AlexNet"],           # 深度学习复兴
    "2014": ["VGG", "GoogLeNet"],  # 深度与宽度探索  
    "2015": ["ResNet", "UNet"],    # 残差连接,医学影像
    "2016": ["DenseNet"],          # 密集连接
    "2017": ["Transformer"],       # 注意力革命
    "2018": ["BERT", "GAN"],       # 预训练模型,生成模型
    "2020": ["Vision Transformer"] # CV的Transformer时代
架构选择指南
图像分类 ResNet, EfficientNet 平衡精度和效率
目标检测 YOLO, Faster R-CNN 实时vs高精度
语义分割 U-Net, DeepLab 医学影像,街景分割
机器翻译 Transformer, BERT 当前最优选择
文本生成 GPT系列 自回归语言模型
图像生成 GAN, VAE, Diffusion 高质量图像合成
语音识别 WaveNet, Conformer 时序信号处理
实用建议
  • 1.从预训练开始:使用在ImageNet等大数据集上预训练的模型
  • 2.迁移学习:针对特定任务微调最后几层
  • 3.架构搜索:使用EfficientNet等自动搜索的架构
  • 4.计算预算:根据可用资源选择合适规模的模型
  • 5.持续学习:关注新架构的发展,如Swin Transformer、ConvNeXt等
笔记记录
相关推荐
Hcoco_me20 分钟前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
OpenCSG1 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
All The Way North-1 小时前
RNN基本介绍
rnn·深度学习·nlp·循环神经网络·时间序列
yatingliu20191 小时前
将深度学习环境迁移至老旧系统| 个人学习笔记
笔记·深度学习·学习
kebijuelun1 小时前
REAP the Experts:去掉 MoE 一半专家还能保持性能不变
人工智能·gpt·深度学习·语言模型·transformer
ldccorpora2 小时前
Multiple-Translation Arabic (MTA) Part 2数据集介绍,官网编号LDC2005T05
人工智能·深度学习·自然语言处理·动态规划·语音识别
其美杰布-富贵-李4 小时前
深度学习中的 tmux
服务器·人工智能·深度学习·tmux
LaughingZhu4 小时前
Product Hunt 每日热榜 | 2026-01-12
人工智能·经验分享·深度学习·神经网络·产品运营
不如自挂东南吱4 小时前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库
长颈鹿仙女5 小时前
深度学习详解拟合,过拟合,欠拟合
人工智能·深度学习