神经 网络

笔记记录
层次
复制代码
全连接层
卷积层
池化层
批量规范化层
激活函数
丢弃层
经典模型
复制代码
LeNet
AlexNet
VGG
Nin
GoogleNet
ResNet
DenseNet

神经网络层的主要类别

python 复制代码
    "基础结构层": ["全连接层", "卷积层", "池化层"],
    "序列处理层": ["RNN", "LSTM", "GRU", "Transformer"],
    "归一化层": ["BatchNorm", "LayerNorm", "InstanceNorm"],
    "正则化层": ["Dropout", "DropPath"],
    "注意力机制": ["自注意力", "交叉注意力", "多头注意力"],
    "嵌入层": ["词嵌入", "位置编码"],
    "激活函数": ["ReLU", "Sigmoid", "Tanh", "Softmax"],
    "特殊连接": ["残差连接", "跳跃连接"],
    "采样层": ["上采样", "下采样", "转置卷积"]

神经网络经典架构时间线

python 复制代码
    "2012": ["AlexNet"],           # 深度学习复兴
    "2014": ["VGG", "GoogLeNet"],  # 深度与宽度探索  
    "2015": ["ResNet", "UNet"],    # 残差连接,医学影像
    "2016": ["DenseNet"],          # 密集连接
    "2017": ["Transformer"],       # 注意力革命
    "2018": ["BERT", "GAN"],       # 预训练模型,生成模型
    "2020": ["Vision Transformer"] # CV的Transformer时代
架构选择指南
图像分类 ResNet, EfficientNet 平衡精度和效率
目标检测 YOLO, Faster R-CNN 实时vs高精度
语义分割 U-Net, DeepLab 医学影像,街景分割
机器翻译 Transformer, BERT 当前最优选择
文本生成 GPT系列 自回归语言模型
图像生成 GAN, VAE, Diffusion 高质量图像合成
语音识别 WaveNet, Conformer 时序信号处理
实用建议
  • 1.从预训练开始:使用在ImageNet等大数据集上预训练的模型
  • 2.迁移学习:针对特定任务微调最后几层
  • 3.架构搜索:使用EfficientNet等自动搜索的架构
  • 4.计算预算:根据可用资源选择合适规模的模型
  • 5.持续学习:关注新架构的发展,如Swin Transformer、ConvNeXt等
笔记记录
相关推荐
不惑_1 小时前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo1 小时前
自定义数据在深度学习中的应用方法
人工智能·深度学习
人工智能培训1 小时前
DNN案例一步步构建深层神经网络(3)
人工智能·深度学习·神经网络·大模型·dnn·具身智能·智能体
youngfengying2 小时前
先验知识融入深度学习
人工智能·深度学习·先验知识
A林玖2 小时前
【深度学习】目标检测
人工智能·深度学习·目标检测
代码洲学长2 小时前
一、RNN基本概念与数学原理
人工智能·rnn·深度学习
A林玖2 小时前
【深度学习】 循环神经网络
人工智能·rnn·深度学习
肥猪猪爸4 小时前
计算机视觉中的Mask是干啥的
图像处理·人工智能·深度学习·神经网络·目标检测·计算机视觉·视觉检测
All The Way North-4 小时前
PyTorch ExponentialLR:按指数学习率衰减原理、API、参数详解、实战
pytorch·深度学习·学习率优化算法·按指数学习率衰减