Elasticsearch 的结构化文档配置 - 递归分块实践

今天我发表的一篇文章 "在 Elasticsearch 中为结构化文档配置递归分块" 看着很简单。可能很多开发者还是不能得其要领,特别是在最新的版本中,我们的向量在默认的情况下是不在 source 里进行展示的。很难理解其中精髓。我在这篇文章里,使用一个具体的例子来进行展示。

例子

我们可以参考官方文档 "Inference integrations" 来进行展示。首先,我们选择系统自带的 ELSER 模型来进行展示。我们必须安装好 ELSER 模型:

首先我们定义如下的一个 inference endpoint:

bash 复制代码
`

1.  PUT _inference/sparse_embedding/recursive_markdown_chunks
2.  {
3.    "service": "elasticsearch",
4.    "service_settings": {
5.      "model_id": ".elser_model_2",
6.      "num_allocations": 1,
7.      "num_threads": 1
8.    },
9.    "chunking_settings": {
10.      "strategy": "recursive",
11.      "max_chunk_size": 25,
12.      "separators": [
13.        "\n# ",
14.        "\n## "
15.      ]
16.    }
17.  }

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

我们可以参考文档来了解 recursive 是如何工作的。递归策略根据可配置的分隔符模式列表(例如换行符或 Markdown 标题)拆分输入文本。分块器按顺序应用这些分隔符,递归地拆分超过 max_chunk_size 单词限制的任何分块。如果没有分隔符生成足够小的分块,该策略将退回到句子级拆分。

在上面,我们使用了 custom separator group:也就是基于第一第二级的 heading 来进行分隔提前。

接下来,我们定义一个索引:

bash 复制代码
`

1.  PUT recursive_markdown_vectors
2.  {
3.    "mappings": {
4.      "properties": {
5.        "content": {
6.          "type": "text",
7.          "copy_to": "inference_field"
8.        },
9.        "inference_field": {
10.          "type": "semantic_text",
11.          "inference_id": "recursive_markdown_chunks"
12.        }
13.      }
14.    }
15.  }

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

然后,我们写入文档:

less 复制代码
`

1.  POST recursive_markdown_vectors/_doc/1
2.  {
3.    "content": "# First Header
4.  This first test sentence has ten total words in it.

6.  ## Second header
7.  This second test sentence has ten total words in it.

9.  # Third Header
10.  This third test sendtence has ten total words in it.

12.  ## Fourth Header
13.  This Fourth test sendtence has ten total words in it.

16.  ## Fifth Header
17.  This fifth test sentence has ten total words in it. This sixth test sentence has ten total words in it. This seventh test sentence has ten total words in it."
18.  }

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

这样我们就大功告成了。

我们可以使用如下的查询来进行展示:

bash 复制代码
`

1.  GET recursive_markdown_vectors/_search?filter_path=**.hits
2.  {
3.    "fields": [
4.      {
5.        "field": "inference_field",
6.        "format": "chunks"
7.      }
8.    ]
9.  }

`AI写代码

注意:上面的 fields 只对 9.2+ 及以上版本起作用。

我们可以看到如下的查询结果:

从上面的结果中,我们可以看到有 3 个 chunks。

我们接下来把 max_chunk_size 设置为 10,看看最后的结果:

bash 复制代码
`

1.  PUT _inference/sparse_embedding/recursive_markdown_chunks
2.  {
3.    "service": "elasticsearch",
4.    "service_settings": {
5.      "model_id": ".elser_model_2",
6.      "num_allocations": 1,
7.      "num_threads": 1
8.    },
9.    "chunking_settings": {
10.      "strategy": "recursive",
11.      "max_chunk_size": 10,
12.      "separators": [
13.        "\n# ",
14.        "\n## "
15.      ]
16.    }
17.  }

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

很显然,它和我们之前的分块还是有点不一样。我们可以试试不同的值来看看。

bash 复制代码
`

1.  PUT _inference/sparse_embedding/recursive_markdown_chunks
2.  {
3.    "service": "elasticsearch",
4.    "service_settings": {
5.      "model_id": ".elser_model_2",
6.      "num_allocations": 1,
7.      "num_threads": 1
8.    },
9.    "chunking_settings": {
10.      "strategy": "recursive",
11.      "max_chunk_size": 35,
12.      "separators": [
13.        "\n# ",
14.        "\n## "
15.      ]
16.    }
17.  }

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

我们也可以尝试使用 "separator_group": "markdown":

bash 复制代码
`

1.  PUT _inference/sparse_embedding/recursive_markdown_chunks
2.  {
3.    "service": "elasticsearch",
4.    "service_settings": {
5.      "model_id": ".elser_model_2",
6.      "num_allocations": 1,
7.      "num_threads": 1
8.    },
9.    "chunking_settings": {
10.      "strategy": "recursive",
11.      "max_chunk_size": 25,
12.      "separator_group": "markdown"
13.    }
14.  }

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

可以看出来,它的结果和我们之前第一个结果的没有什么不一样的,这是因为 markdown 所包含的 separators 里也是对 heading 进行分段的。

相关推荐
fruge8 小时前
Git 进阶技巧:分支管理、冲突解决、提交规范实操
大数据·git·elasticsearch
Wang's Blog12 小时前
Elastic Stack梳理:索引与查询时的分词应用、配置优化与工程实践
大数据·elasticsearch·搜索引擎
Elasticsearch13 小时前
Elasticsearch:在隔离环境中安装 ELSER 模型
elasticsearch
safestar201215 小时前
Elasticsearch ILM实战:从数据热恋到冷静归档的自动化管理
java·开发语言·jvm·elasticsearch·es
一笑code15 小时前
git常用命令
大数据·git·elasticsearch
k***817215 小时前
使用Canal将MySQL数据同步到ES(Linux)
linux·mysql·elasticsearch
弘毅 失败的 mian15 小时前
Git 基本操作
大数据·经验分享·笔记·git·elasticsearch
risc12345616 小时前
【Elasticsearch】迁出节点”≠“恢复源节点
大数据·elasticsearch·搜索引擎
点亮~黑夜18 小时前
git详细使用教程
大数据·git·elasticsearch
j***827018 小时前
探索Spring Cloud Config:构建高可用的配置中心
大数据·elasticsearch·搜索引擎