CMake Error at fc_base/gflags-src/CMakeLists.txt:73

完整日志:

shell 复制代码
CMake Warning (dev) at /root/miniconda3/share/cmake-4.1/Modules/FetchContent.cmake:1373 (message):
  The DOWNLOAD_EXTRACT_TIMESTAMP option was not given and policy CMP0135 is
  not set.  The policy's OLD behavior will be used.  When using a URL
  download, the timestamps of extracted files should preferably be that of
  the time of extraction, otherwise code that depends on the extracted
  contents might not be rebuilt if the URL changes.  The OLD behavior
  preserves the timestamps from the archive instead, but this is usually not
  what you want.  Update your project to the NEW behavior or specify the
  DOWNLOAD_EXTRACT_TIMESTAMP option with a value of true to avoid this
  robustness issue.
Call Stack (most recent call first):
  cmake/gflags.cmake:1 (FetchContent_Declare)
  cmake/openfst.cmake:2 (include)
  CMakeLists.txt:44 (include)
This warning is for project developers.  Use -Wno-dev to suppress it.

-- Populating gflags
-- Configuring done (0.3s)
-- Generating done (0.0s)
-- Build files have been written to: /root/autodl-tmp/wenet/runtime/libtorch/fc_base/gflags-subbuild
[100%] Built target gflags-populate
CMake Error at fc_base/gflags-src/CMakeLists.txt:73 (cmake_minimum_required):
  Compatibility with CMake < 3.5 has been removed from CMake.

  Update the VERSION argument <min> value.  Or, use the <min>...<max> syntax
  to tell CMake that the project requires at least <min> but has been updated
  to work with policies introduced by <max> or earlier.

  Or, add -DCMAKE_POLICY_VERSION_MINIMUM=3.5 to try configuring anyway.


-- Configuring incomplete, errors occurred!

在构建 wenet runtime 时报错,如上。

构建命令为:

shell 复制代码
mkdir build && cd build && cmake .. && cmake --build .

构建命令指定版本即可解决:

shell 复制代码
cmake -version
# cmake version 4.1.2
shell 复制代码
mkdir build && cd build && cmake -DCMAKE_POLICY_VERSION_MINIMUM=4.1.2 .. && cmake --build .

需要将原本的 build 目录删了

shell 复制代码
...
[ 91%] Linking CXX executable label_checker_main
[ 91%] Built target label_checker_main
[ 93%] Building CXX object bin/CMakeFiles/api_main.dir/api_main.cc.o
[ 94%] Linking CXX executable api_main
[ 94%] Built target api_main
[ 95%] Building CXX object bin/CMakeFiles/websocket_client_main.dir/websocket_client_main.cc.o
[ 97%] Linking CXX executable websocket_client_main
[ 97%] Built target websocket_client_main
[ 98%] Building CXX object bin/CMakeFiles/websocket_server_main.dir/websocket_server_main.cc.o
[100%] Linking CXX executable websocket_server_main
[100%] Built target websocket_server_main
相关推荐
严文文-Chris6 分钟前
【机器学习、深度学习、神经网络之间的区别和关系】
深度学习·神经网络·机器学习
噜~噜~噜~26 分钟前
STAR(Stability-Inducing Weight Perturbation)的个人理解
人工智能·深度学习·损失函数·持续学习·star
子午32 分钟前
【鱼类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法+resnet50
人工智能·python·深度学习
CV爱数码42 分钟前
【宝藏数据集】MCOD:多光谱伪装目标检测首个挑战性基准
人工智能·深度学习·目标检测·计算机视觉·目标跟踪·数据集
JeffDingAI1 小时前
【MindSpore社区活动】在对抗中增强网络实践
python·深度学习·gan
Drise_1 小时前
编码器详解(超详细+图解)
深度学习
Mr_Oak1 小时前
【multi-model】DINOv2(包含iBOT)& 问答
图像处理·人工智能·深度学习·算法·多模态·对比学习·视觉大模型
七夜zippoe1 小时前
轻量模型微调:LoRA、QLoRA实战对比与工程实践指南
人工智能·深度学习·算法·lora·qlora·量化训练
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2025-12-04
人工智能·经验分享·深度学习·神经网络·产品运营