LeetCode 206: Reverse Linked List

LeetCode 206: Reverse Linked List

    • [1. Problem Link 🔗](#1. Problem Link 🔗)
    • [2. Solution Overview 🧭](#2. Solution Overview 🧭)
    • [3. Solution 1: Iterative Approach (Recommended)](#3. Solution 1: Iterative Approach (Recommended))
      • [3.1. Algorithm](#3.1. Algorithm)
      • [3.2. Important Points](#3.2. Important Points)
      • [3.3. Java Implementation](#3.3. Java Implementation)
      • [3.4. Time & Space Complexity](#3.4. Time & Space Complexity)
    • [4. Solution 2: Recursive Approach](#4. Solution 2: Recursive Approach)
      • [4.1. Algorithm](#4.1. Algorithm)
      • [4.2. Important Points](#4.2. Important Points)
      • [4.3. Java Implementation](#4.3. Java Implementation)
      • [4.4. Time & Space Complexity](#4.4. Time & Space Complexity)
    • [5. Solution 3: Recursive with Helper Function](#5. Solution 3: Recursive with Helper Function)
      • [5.1. Algorithm](#5.1. Algorithm)
      • [5.2. Important Points](#5.2. Important Points)
      • [5.3. Java Implementation](#5.3. Java Implementation)
      • [5.4. Time & Space Complexity](#5.4. Time & Space Complexity)
    • [6. Solution 4: Iterative with Dummy Node](#6. Solution 4: Iterative with Dummy Node)
      • [6.1. Algorithm](#6.1. Algorithm)
      • [6.2. Important Points](#6.2. Important Points)
      • [6.3. Java Implementation](#6.3. Java Implementation)
      • [6.4. Time & Space Complexity](#6.4. Time & Space Complexity)
    • [7. Solution 5: Tail Recursive Approach](#7. Solution 5: Tail Recursive Approach)
      • [7.1. Algorithm](#7.1. Algorithm)
      • [7.2. Important Points](#7.2. Important Points)
      • [7.3. Java Implementation](#7.3. Java Implementation)
      • [7.4. Time & Space Complexity](#7.4. Time & Space Complexity)
    • [8. Solution Comparison 📊](#8. Solution Comparison 📊)
    • [9. Summary 📝](#9. Summary 📝)

LeetCode 206: Reverse Linked List

2. Solution Overview 🧭

Reverse a singly linked list. This is a fundamental linked list operation that appears frequently in interviews and real-world applications.

Example:

复制代码
Input: 1 → 2 → 3 → 4 → 5 → NULL
Output: 5 → 4 → 3 → 2 → 1 → NULL

Constraints:

  • The number of nodes in the list is the range [0, 5000]
  • -5000 <= Node.val <= 5000

Common approaches include:

  • Iterative Approach: Use three pointers to reverse links one by one
  • Recursive Approach: Recursively reverse the rest of the list and adjust pointers
  • Stack-based Approach: Use stack to reverse order (less efficient)

3. Solution 1: Iterative Approach (Recommended)

3.1. Algorithm

  • Use three pointers: prev, current, next
  • Traverse the list, reversing the next pointer of each node
  • Move pointers forward until the entire list is reversed

3.2. Important Points

  • Most efficient and intuitive
  • O(1) space complexity
  • Easy to understand and implement

3.3. Java Implementation

java 复制代码
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode reverseList(ListNode head) {
        ListNode prev = null;
        ListNode current = head;
        
        while (current != null) {
            ListNode nextTemp = current.next; // Store next node
            current.next = prev;              // Reverse the link
            prev = current;                   // Move prev forward
            current = nextTemp;               // Move current forward
        }
        
        return prev; // New head of reversed list
    }
}

3.4. Time & Space Complexity

  • Time Complexity: O(n)
  • Space Complexity: O(1)

4. Solution 2: Recursive Approach

4.1. Algorithm

  • Recursively reverse the rest of the list (head.next)
  • Adjust pointers so that the current node becomes the last node
  • The base case handles the end of the list

4.2. Important Points

  • Elegant but uses O(n) stack space
  • Good for understanding recursion
  • May cause stack overflow for very long lists

4.3. Java Implementation

java 复制代码
class Solution {
    public ListNode reverseList(ListNode head) {
        // Base case: empty list or single node
        if (head == null || head.next == null) {
            return head;
        }
        
        // Recursively reverse the rest of the list
        ListNode newHead = reverseList(head.next);
        
        // Adjust pointers: make current node the next of the last node
        head.next.next = head;
        head.next = null;
        
        return newHead;
    }
}

4.4. Time & Space Complexity

  • Time Complexity: O(n)
  • Space Complexity: O(n) - recursion stack

5. Solution 3: Recursive with Helper Function

5.1. Algorithm

  • Use a helper function to carry the previous node through recursion
  • Similar to iterative approach but implemented recursively
  • More intuitive for some developers

5.2. Important Points

  • Combines recursion with iterative logic
  • Easier to understand for some
  • Still uses O(n) stack space

5.3. Java Implementation

java 复制代码
class Solution {
    public ListNode reverseList(ListNode head) {
        return reverseHelper(head, null);
    }
    
    private ListNode reverseHelper(ListNode current, ListNode prev) {
        // Base case: reached end of list
        if (current == null) {
            return prev;
        }
        
        // Store next node before reversing
        ListNode nextTemp = current.next;
        
        // Reverse the current node
        current.next = prev;
        
        // Recursively process the next node
        return reverseHelper(nextTemp, current);
    }
}

5.4. Time & Space Complexity

  • Time Complexity: O(n)
  • Space Complexity: O(n) - recursion stack

6. Solution 4: Iterative with Dummy Node

6.1. Algorithm

  • Use a dummy node to simplify edge cases
  • Build the reversed list by inserting nodes at the beginning
  • More explicit but slightly more memory usage

6.2. Important Points

  • Handles edge cases gracefully
  • Clear separation of concerns
  • Good for learning purposes

6.3. Java Implementation

java 复制代码
class Solution {
    public ListNode reverseList(ListNode head) {
        if (head == null) return null;
        
        ListNode dummy = new ListNode(0);
        ListNode current = head;
        
        while (current != null) {
            ListNode nextTemp = current.next;
            
            // Insert current node at the beginning of reversed list
            current.next = dummy.next;
            dummy.next = current;
            
            current = nextTemp;
        }
        
        return dummy.next;
    }
}

6.4. Time & Space Complexity

  • Time Complexity: O(n)
  • Space Complexity: O(1)

7. Solution 5: Tail Recursive Approach

7.1. Algorithm

  • Optimized recursive approach that could benefit from tail call optimization
  • Some compilers can optimize this to use O(1) stack space
  • Clean functional programming style

7.2. Important Points

  • Potentially more efficient recursion
  • Clean mathematical approach
  • Java doesn't guarantee tail call optimization

7.3. Java Implementation

java 复制代码
class Solution {
    public ListNode reverseList(ListNode head) {
        return tailReverse(head, null);
    }
    
    private ListNode tailReverse(ListNode head, ListNode newHead) {
        if (head == null) {
            return newHead;
        }
        
        ListNode next = head.next;
        head.next = newHead;
        
        return tailReverse(next, head);
    }
}

7.4. Time & Space Complexity

  • Time Complexity: O(n)
  • Space Complexity: O(n) - though tail recursive, Java doesn't optimize

8. Solution Comparison 📊

Solution Time Complexity Space Complexity Advantages Disadvantages
Iterative O(n) O(1) Most efficient, intuitive None significant
Recursive O(n) O(n) Elegant, educational Stack overflow risk
Recursive Helper O(n) O(n) Combines recursion with iteration Still uses stack space
Iterative with Dummy O(n) O(1) Handles edges well Slight memory overhead
Tail Recursive O(n) O(n) Clean functional style No optimization in Java

9. Summary 📝

  • Key Insight: Reversing a linked list involves changing the direction of pointers while maintaining access to remaining nodes
  • Recommended Approach: Solution 1 (Iterative) for production code due to O(1) space
  • Recursive Insight: The recursive approach beautifully demonstrates divide-and-conquer by reversing the rest first
  • Pattern Recognition: This is a fundamental pattern for linked list manipulation

Recursive Thinking Process:

  1. Base case: empty list or single node is already reversed
  2. Recursively reverse everything after the current node
  3. Make the current node point to the new last node
  4. Make the last node point back to current node
  5. Break the original link to avoid cycles

For most practical purposes, the iterative approach is preferred, but understanding recursion is crucial for advanced algorithm problems.

相关推荐
爬山算法2 小时前
Hibernate(90)如何在故障注入测试中使用Hibernate?
java·后端·hibernate
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
kfyty7253 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
猫头虎3 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
李少兄3 小时前
在 IntelliJ IDEA 中修改 Git 远程仓库地址
java·git·intellij-idea
忆~遂愿3 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
小韩学长yyds3 小时前
Java序列化避坑指南:明确这4种场景,再也不盲目实现Serializable
java·序列化
仟濹3 小时前
【Java基础】多态 | 打卡day2
java·开发语言
孞㐑¥3 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
Re.不晚3 小时前
JAVA进阶之路——无奖问答挑战2
java·开发语言