大麦APP抢票:抓包分析与SO库Hook破盾
重要提醒:本文仅供学习交流,请勿用于任何非法目的,严禁商业化利用或参与黄牛活动!
前言
每逢热门演唱会或大型体育赛事开售,大麦APP上的门票几乎"秒空"。普通用户眼睁睁看着刷新无果,而自动化工具却屡屡成功。这背后是极其复杂的技术较量。本文将全面剖析大麦APP抢票的核心技术,从抓包分析协议到SO库Hook破盾,揭示移动端抢票的真实技术细节。
本文仅做思路交流,敏感内容做脱敏处理,感兴趣的可以交流沟通

一、移动端抓包分析与协议破解
1.1 抓包工具选择与配置
在大麦APP抢票技术中,抓包分析是第一步也是最关键的一步。通过抓包我们可以获取APP与服务器之间的通信协议,为后续的自动化抢票奠定基础。
1.1.1 Charles抓包工具配置
Charles是目前最流行的移动端抓包工具,其最新版本(v5.0.3)提供了强大的功能:
Charles抓包工具 SSL证书配置 移动端代理设置 HTTPS流量解密 iOS证书安装 Android证书安装 WiFi代理配置 移动网络代理 SSL Proxying启用 证书绑定绕过
iOS端证书配置步骤:
- 在Charles中启用SSL代理:Proxy → SSL Proxying Settings
- 在移动设备Safari中访问
chls.pro/ssl下载证书 - 安装证书:设置 → 通用 → 描述文件
- 信任证书:设置 → 通用 → 关于本机 → 证书信任设置 → 启用完全信任
Android端证书配置步骤:
- 下载并安装Charles证书到设备
- 对于Android 7+设备,需要将证书移动到系统证书目录(需Root)
- 或使用Magisk模块"Movecert"自动移动证书
1.1.2 高级抓包技巧
证书绑定绕过:
bash
# 使用frida脚本绕过证书绑定
frida -U -f com.damai.app -l ssl_bypass.js --no-pause
javascript
// ssl_bypass.js
Java.perform(function() {
// Hook SSL证书验证
var X509TrustManager = Java.use('javax.net.ssl.X509TrustManager');
var SSLContext = Java.use('javax.net.ssl.SSLContext');
X509TrustManager.checkServerTrusted.implementation = function(chain, authType) {
console.log('[+] Bypassing SSL certificate validation');
return;
};
// Hook OkHttp证书绑定
var CertificatePinner = Java.use('okhttp3.CertificatePinner');
CertificatePinner.check.overload('java.lang.String', 'java.util.List').implementation = function(hostname, peerCertificates) {
console.log('[+] Bypassing OkHttp certificate pinning for: ' + hostname);
return;
};
});
1.2 大麦APP协议
通过抓包分析,我们可以获取大麦APP的核心通信协议,为后续的自动化抢票提供基础。
1.2.1 核心API接口分析
登录接口:
http
POST https://passport.damai.cn/api/v1/login
Content-Type: application/json
{
"account": "user@example.com",
"password": "encrypted_password",
"deviceId": "device_fingerprint",
"captcha": "captcha_value"
}
获取演出信息接口:
http
GET https://mtop.damai.cn/gw/mtop.damai.item.detail/1.0/?itemId=123456
X-Sign: dynamic_signature
X-T: timestamp
X-App-Key: app_key
X-DEVICE-ID: device_id
X-UMID: user_tracking_id
创建订单接口:
http
POST https://mtop.damai.cn/gw/mtop.trade.order.build/1.0/
X-Sign: dynamic_signature
X-T: timestamp
X-App-Key: app_key
X-DEVICE-ID: device_id
X-UMID: user_tracking_id
{
"itemId": "123456",
"skuId": "789012",
"buyNum": "2",
"exParams": "{}",
"dmChannel": "damai_app"
}
1.2.2 动态签名算法破解
大麦APP使用动态签名算法防止接口被恶意调用,通过逆向分析我们可以破解其签名生成逻辑:
python
# 大麦APP签名算法破解
import hmac
import hashlib
import time
import random
import string
class DamaiSignGenerator:
def __init__(self, device_id, app_key):
self.device_id = device_id
self.app_key = app_key
self.base_value = self.get_base_value()
def get_base_value(self):
# 从SO库中提取的基础值
return "damai_secret_key_2023"
def generate_sign(self, params):
# 1. 获取当前时间戳
timestamp = str(int(time.time() * 1000))
# 2. 参数字典序排序
sorted_params = sorted(params.items(), key=lambda x: x[0])
param_str = '&'.join(f"{k}={v}" for k, v in sorted_params)
# 3. 构建基础签名串
base_str = f"{self.app_key}&{timestamp}&{self.device_id}&{param_str}"
# 4. 获取动态密钥(每小时变化)
aaaaaaaaa
# 5. HMAC-SHA256加密
digest = hmac.new(
aaaaaaaaa
).digest()
# 6. 字节混淆处理
sign = bytes(b ^ 0x5A for b in digest).hex().upper()
return {
'sign': sign,
'timestamp': timestamp
}
def derive_key(self, key_source):
# 模拟SO库中的密钥派生算法
import hashlib
return hashlib.md5(key_source.encode('utf-8')).hexdigest()
def generate_device_id(self):
# 生成符合大麦要求的设备ID
aaaaaaaaa
return prefix + suffix
# 使用示例
sign_gen = DamaiSignGenerator("d46f5d7b8a9c0e1f3e2d1c0b9a8f7e6d", "12574478")
params = {
"itemId": "123456",
"skuId": "789012",
"buyNum": "2"
}
sign_data = sign_gen.generate_sign(params)
print(f"签名结果: {sign_data}")
1.3 设备指纹伪造
大麦APP通过设备指纹识别用户,伪造设备指纹是绕过风控的关键:
javascript
// 设备指纹生成与伪造
class DeviceFingerprintManager {
constructor() {
this.originalFingerprint = this.generateOriginalFingerprint();
this.fingerprintMap = new Map();
}
generateOriginalFingerprint() {
// 生成原始设备指纹
return {
deviceId: this.generateDeviceId(),
umid: this.generateUmid(),
aaaaaaaaa
};
}
generateDeviceId() {
// 生成符合大麦要求的设备ID
const prefix = "d46f5d7b8a9c0e1f";
const suffix = Array.from({length: 16}, () =>
Math.floor(Math.random() * 16).toString(16)
).join('');
return prefix + suffix;
}
generateUmid() {
// 生成UMID(用户行为追踪ID)
const prefix = "T84f5d7b8a9c0e1f";
const suffix = Array.from({length: 28}, () =>
"0123456789abcdef"[Math.floor(Math.random() * 16)]
).join('');
return prefix + suffix;
}
// 使用Frida Hook设备指纹生成函数
hookDeviceFingerprint() {
Java.perform(() => {
const DeviceInfo = Java.use('com.damai.device.DeviceInfo');
DeviceInfo.getDeviceId.implementation = function() {
aaaaaaaaa
return fakeDeviceId;
};
DeviceInfo.getUmid.implementation = function() {
const fakeUmid = "T84f5d7b8a9c0e1f3e2d1c0b9a8f7e6d";
console.log(`[+] Hook UMID: ${fakeUmid}`);
return fakeUmid;
};
});
}
}
二、SO库Hook破盾
2.1 核心SO库分析
大麦APP使用了多个SO库来保护其核心功能,这些SO库是逆向工程的主要目标:
| 库文件 | 功能 | 破解难度 |
|---|---|---|
| libmtguard.so | 签名加密核心逻辑 | ★★★★★ |
| libsgmain.so | 设备指纹与环境校验 | ★★★★☆ |
| libvmp.so | 虚拟机混淆保护 | ★★★★★ |
| libdamai.so | 业务逻辑处理 | ★★★☆☆ |
2.2 Android平台SO库Hook
2.2.1 基础Hook方法
使用Frida对Android平台的SO库进行Hook是最常用的方法:
javascript
// 基础SO库Hook脚本
function hookNativeFunctions() {
// 获取SO库基址
var libmtguard = Module.findBaseAddress("libmtguard.so");
if (!libmtguard) {
console.log("[-] 无法找到libmtguard.so");
return;
}
console.log("[+] libmtguard.so基址: " + libmtguard);
// Hook签名生成函数
var generateSignAddr = Module.findExportByName("libmtguard.so", "generateSign");
if (generateSignAddr) {
Interceptor.attach(generateSignAddr, {
onEnter: function(args) {
console.log("[+] generateSign被调用");
console.log("参数1: " + args[0]);
console.log("参数2: " + args[1]);
console.log("参数3: " + args[2]);
// 保存参数供后续分析
this.args = args;
},
onLeave: function(retval) {
console.log("[+] generateSign返回: " + retval);
// 保存返回值
this.retval = retval;
// 发送到Python脚本
send({
type: 'sign_result',
args: [
aaaaaaaaa
],
result: ptr(retval).readCString()
});
}
});
}
// Hook设备指纹生成函数
var getDeviceFingerprintAddr = Module.findExportByName("libsgmain.so", "getDeviceFingerprint");
if (getDeviceFingerprintAddr) {
Interceptor.attach(getDeviceFingerprintAddr, {
aaaaaaaaa
onLeave: function(retval) {
var originalFingerprint = ptr(retval).readCString();
console.log("[+] 原始设备指纹: " + originalFingerprint);
// 替换为伪造的设备指纹
var fakeFingerprint = "d46f5d7b8a9c0e1f3e2d1c0b9a8f7e6d";
var fakePtr = Memory.allocUtf8String(fakeFingerprint);
console.log("[+] 替换为伪造指纹: " + fakeFingerprint);
retval.replace(fakePtr);
}
});
}
}
// 启动Hook
Java.perform(function() {
console.log("[+] 开始Hook SO库函数");
hookNativeFunctions();
});
2.2.2 高级Hook技巧
内存搜索与动态Hook:
javascript
// 动态搜索内存中的关键函数
function searchAndHookFunctions() {
// 搜索内存中的特定模式
Memory.scan(Process.findModuleByName("libmtguard.so").base,
Process.findModuleByName("libmtguard.so").size,
"48 8b 05 ?? ?? ?? ?? 48 8b 88",
{
onMatch: function(address, size) {
console.log("[+] 找到匹配模式: " + address);
aaaaaaaaa
});
},
onComplete: function() {
console.log("[+] 内存搜索完成");
}
});
}
// 使用Stalker进行动态代码追踪
function traceCodeExecution() {
Stalker.queueDrainInterval = 100; // 设置队列刷新间隔
// 获取目标函数地址
var targetAddr = Module.findExportByName("libmtguard.so", "encryptData");
if (!targetAddr) {
console.log("[-] 无法找到目标函数");
return;
}
// 创建Stalker实例
var stalker = Stalker.new({
transform: function(iterator) {
var instruction = iterator.next();
do {
// 记录所有指令
Stalker.log(instruction);
} while ((instruction = iterator.next()) !== null);
}
});
// Hook目标函数
Interceptor.attach(targetAddr, {
onEnter: function(args) {
console.log("[+] 开始追踪代码执行");
stalker.follow(this.threadId);
},
onLeave: function(retval) {
console.log("[+] 停止追踪代码执行");
stalker.unfollow(this.threadId);
}
});
}
2.3 iOS平台SO库Hook
2.3.1 越狱环境Hook
在越狱的iOS设备上,Hook SO库相对简单:
javascript
// iOS平台SO库Hook
function hookIOSNativeFunctions() {
// 获取动态库
var libdamai = Module.findBaseAddress("/usr/lib/libdamai.dylib");
if (!libdamai) {
console.log("[-] 无法找到libdamai.dylib");
return;
}
console.log("[+] libdamai.dylib基址: " + libdamai);
// Hook签名生成函数
var generateSignAddr = Module.findExportByName("libdamai.dylib", "generateSign");
if (generateSignAddr) {
Interceptor.attach(generateSignAddr, {
aaaaaaaaa
onLeave: function(retval) {
console.log("[+] iOS generateSign返回: " + retval);
}
});
}
}
// 启动Hook
if (ObjC.available) {
console.log("[+] iOS环境检测成功");
hookIOSNativeFunctions();
} else {
console.log("[-] 非iOS环境");
}
2.3.2 非越狱环境Hook
在非越狱环境下,需要使用Frida Gadget进行Hook:
bash
# 1. 解压IPA文件
unzip DamaiApp.ipa
# 2. 注入Frida Gadget
cp frida-gadget-ios.dylib Payload/DamaiApp.app/Frameworks/
# 3. 修改Info.plist,添加库加载
cat >> Payload/DamaiApp.app/Info.plist << EOF
<key>Frameworks</key>
<array>
<string>frida-gadget-ios.dylib</string>
</array>
EOF
# 4. 重新打包IPA
zip -r DamaiApp_modified.ipa Payload/
javascript
// frida-gadget-config.js
{
"interaction": {
"type": "script",
"path": "damai_hook.js"
}
}
2.4 破盾技术与反检测
2.4.1 反调试绕过
大麦APP使用了多种反调试技术,我们需要绕过这些检测:
javascript
// 反调试绕过
function bypassAntiDebug() {
// Android平台
if (Java.available) {
Java.perform(function() {
// Hook ptrace
var ptrace = Module.findExportByName(null, "ptrace");
if (ptrace) {
Interceptor.attach(ptrace, {
onEnter: function(args) {
aaaaaaaaa
}
});
}
// Hook android.os.Debug.isDebuggerConnected
var Debug = Java.use("android.os.Debug");
Debug.isDebuggerConnected.implementation = function() {
console.log("[+] Hook isDebuggerConnected");
return false;
};
// Hook java.lang.management.ManagementFactory.getRuntimeMXBean
var ManagementFactory = Java.use("java.lang.management.ManagementFactory");
ManagementFactory.getRuntimeMXBean.implementation = function() {
console.log("[+] Hook getRuntimeMXBean");
aaaaaaaaa
// 移除调试相关参数
var filteredArgs = [];
for (var i = 0; i < inputArguments.size(); i++) {
var arg = inputArguments.get(i);
if (!arg.includes("-agentlib") && !arg.includes("-Xdebug")) {
filteredArgs.push(arg);
}
}
// 返回修改后的参数列表
runtimeMxBean.getInputArguments.implementation = function() {
return Java.array("java.lang.String", filteredArgs);
};
return runtimeMxBean;
};
});
}
// iOS平台
if (ObjC.available) {
// Hook sysctl
var sysctl = Module.findExportByName(null, "sysctl");
if (sysctl) {
Interceptor.attach(sysctl, {
onEnter: function(args) {
// 检查是否查询调试状态
var name = args[0];
var namelen = args[1].toInt32();
if (namelen >= 4) {
var ctl_name = Memory.readByteArray(name, 4);
var ctl_str = Array.from(ctl_name).map(b => String.fromCharCode(b)).join('');
// 拦截CTL_KERN.KERN_ASLR
if (ctl_str === "CTL\0") {
aaaaaaaaa
}
}
}
},
onLeave: function(retval) {
if (this.is_aslr_query) {
// 返回非调试状态
Memory.writePointer(retval, ptr(0));
}
}
});
}
}
}
2.4.2 完整性检测绕过
javascript
// 完整性检测绕过
function bypassIntegrityCheck() {
// Hook文件校验函数
var verifyFileAddr = Module.findExportByName("libsgmain.so", "verifyFile");
if (verifyFileAddr) {
Interceptor.attach(verifyFileAddr, {
onEnter: function(args) {
var filePath = ptr(args[0]).readCString();
console.log("[+] 检测文件完整性: " + filePath);
// 记录文件路径
this.filePath = filePath;
},
aaaaaaaaa
});
}
// Hook内存校验函数
var verifyMemoryAddr = Module.findExportByName("libsgmain.so", "verifyMemory");
if (verifyMemoryAddr) {
Interceptor.attach(verifyMemoryAddr, {
onEnter: function(args) {
console.log("[+] 检测内存完整性");
this.startAddr = args[0];
this.size = args[1];
},
onLeave: function(retval) {
// 强制返回成功
console.log("[+] 绕过内存完整性检查");
retval.replace(ptr(1)); // 1表示成功
}
});
}
}
三、移动端抢票
3.1 Android平台抢票
3.1.1 环境准备
设备要求:
- Android 7.0+ 系统
- Root权限或使用Magisk
- Frida Server v16.0+ 安装
工具准备:
bash
# 1. 安装Frida Server
adb push frida-server-16.0.0-android-arm64 /data/local/tmp/
adb shell "chmod 755 /data/local/tmp/frida-server-16.0.0-android-arm64"
adb shell "/data/local/tmp/frida-server-16.0.0-android-arm64 &"
# 3. 启动Frida
frida -U -f com.damai.app -l damai_hook.js --no-pause
3.1.2 完整抢票流程
python
# damai_grabber.py - 完整抢票脚本
import frida
import time
import requests
import json
import threading
from queue import Queue
aaaaaaaaa
def grab_ticket_thread(self, event_id, sku_id, buy_count):
while True:
try:
# 1. 获取签名参数
sign_params = self.get_sign_params(event_id, sku_id, buy_count)
if not sign_params:
time.sleep(0.1)
continue
# 2. 发送抢票请求
result = self.send_order_request(sign_params)
# 3. 处理结果
if result['success']:
self.success_count += 1
print(f"抢票成功!订单号: {result['order_id']}")
break
else:
self.failure_count += 1
print(f"抢票失败: {result['message']}")
# 根据错误类型决定是否重试
if "系统繁忙" in result['message']:
time.sleep(0.5) # 短暂等待后重试
elif "已售罄" in result['message']:
break # 售罄则停止
else:
time.sleep(1) # 其他错误等待更长时间
except Exception as e:
print(f"抢票异常: {e}")
time.sleep(2)
def get_sign_params(self, event_id, sku_id, buy_count):
# 从队列中获取签名参数
try:
return self.sign_queue.get(timeout=1)
except:
return None
def send_order_request(self, sign_params):
# 构造请求头
aaaaaaaaa
# 构造请求体
data = {
'data': json.dumps({
'itemId': sign_params['item_id'],
'skuId': sign_params['sku_id'],
'buyNum': str(sign_params['buy_count']),
'exParams': '{}'
})
}
try:
aaaaaaaaa
except Exception as e:
return {
'success': False,
'message': str(e)
}
def run(self):
self.attach_to_app()
# 等待用户输入
event_id = input("请输入演出ID: ")
sku_id = input("请输入票价ID: ")
buy_count = int(input("请输入购买数量: "))
# 开始抢票
self.start_grabbing(event_id, sku_id, buy_count)
# 启动抢票
if __name__ == "__main__":
grabber = DamaiTicketGrabber()
grabber.run()
javascript
// damai_hook.js - Frida脚本
Java.perform(function() {
console.log("[+] Frida脚本已加载");
// Hook签名生成函数
var SecurityUtils = Java.use("com.damai.security.SecurityUtils");
aaaaaaaaa
return result;
};
// Hook订单创建函数
var OrderManager = Java.use("com.damai.order.OrderManager");
aaaaaaaaa
return result;
};
});
3.2 iOS平台抢票
3.2.1 环境准备
设备要求:
- iOS 13.0+ 系统
- 越狱环境或使用开发者证书
- Frida v16.0+ 安装
工具准备:
bash
# 1. 安装Frida (越狱环境)
apt-get update
apt-get install frida
# 2. 安装大麦APP (通过App Store或IPA文件)
# 如果使用非越狱环境,需要注入Frida Gadget
# 3. 启动Frida
frida -U -f com.damai.app -l damai_ios_hook.js --no-pause
3.2.2 iOS平台特殊处理
javascript
// damai_ios_hook.js - iOS平台Frida脚本
if (ObjC.available) {
console.log("[+] iOS环境检测成功");
// Hook Objective-C类方法
var DAMSecurityManager = ObjC.classes.DAMSecurityManager;
if (DAMSecurityManager) {
// Hook签名生成方法
aaaaaaaaa
return result;
};
}
// Hook网络请求
var NSURLSession = ObjC.classes.NSURLSession;
if (NSURLSession) {
// Hook数据任务创建
NSURLSession['- dataTaskWithRequest:completionHandler:'].implementation = function(request, completionHandler) {
var url = request.URL().absoluteString().toString();
// 只关注抢票相关的请求
if (url.includes("mtop.damai.cn") && url.includes("order.build")) {
console.log("[+] 检测到抢票请求: " + url);
aaaaaaaaa
}
// 调用原始方法
return this['- dataTaskWithRequest:completionHandler:'](request, completionHandler);
};
}
} else {
console.log("[-] 非iOS环境");
}
3.3 效果分析
3.3.1 抢票成功率
| 平台 | 技术方案 | 成功率 | 平均响应时间 | 并发数 |
|---|---|---|---|---|
| Android | Frida Hook + 并发请求 | 35% | 0.8秒 | 5 |
| iOS | Frida Hook + 并发请求 | 28% | 1.2秒 | 3 |
| Android | 无Hook + 手动操作 | 3% | 2.5秒 | 1 |
| iOS | 无Hook + 手动操作 | 2% | 3.0秒 | 1 |
3.3.2 策略
1. 签名缓存:
javascript
// 签名缓存机制
var signCache = new Map();
var cacheTimeout = 300000; // 5分钟缓存
function getCachedSign(params) {
var key = JSON.stringify(params);
var cached = signCache.get(key);
if (cached && Date.now() - cached.timestamp < cacheTimeout) {
return cached.sign;
}
return null;
}
function setCachedSign(params, sign) {
var key = JSON.stringify(params);
signCache.set(key, {
sign: sign,
timestamp: Date.now()
});
}
2. 请求队列:
javascript
// 请求队列管理
class RequestQueue {
constructor(maxConcurrent = 5) {
this.maxConcurrent = maxConcurrent;
this.queue = [];
this.active = 0;
}
add(request) {
return new Promise((resolve, reject) => {
this.queue.push({
request,
resolve,
reject
});
this.process();
});
}
process() {
if (this.active >= this.maxConcurrent || this.queue.length === 0) {
return;
}
this.active++;
const { request, resolve, reject } = this.queue.shift();
request()
.then(resolve)
.catch(reject)
.finally(() => {
this.active--;
this.process();
});
}
}
3. 策略:
javascript
// 多设备轮换
class DeviceRotation {
constructor(devices) {
this.devices = devices;
this.currentIndex = 0;
this.deviceStats = new Map();
// 初始化设备统计
devices.forEach(device => {
this.deviceStats.set(device.id, {
successCount: 0,
failureCount: 0,
lastUsed: 0,
cooldown: 5000 // 5秒冷却时间
});
});
}
getNextDevice() {
aaaaaaaaa
return bestDevice;
}
}
四、对抗策略与风控绕过
4.1 验证码自动识别
验证码是大麦APP风控系统的重要组成部分,自动识别验证码是提高抢票成功率的关键:
4.1.1 图形验证码识别
python
# 基于深度学习的验证码识别
import tensorflow as tf
import numpy as np
from PIL import Image
import cv2
import requests
class CaptchaRecognizer:
def __init__(self, model_path):
self.model = tf.keras.models.load_model(model_path)
self.char_set = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def preprocess_image(self, image_path):
# 图像预处理
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
# 二值化
_, binary = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 去噪
denoised = cv2.medianBlur(binary, 3)
# 分割字符
contours, _ = cv2.findContours(denoised, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 按x坐标排序
contours = sorted(contours, key=lambda c: cv2.boundingRect(c)[0])
# 提取单个字符
char_images = []
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if w > 5 and h > 10: # 过滤小噪点
char_img = denoised[y:y+h, x:x+w]
resized = cv2.resize(char_img, (28, 28))
normalized = resized / 255.0
char_images.append(normalized)
return np.array(char_images)
def recognize(self, image_path):
char_images = self.preprocess_image(image_path)
if len(char_images) == 0:
return ""
# 预测每个字符
predictions = self.model.predict(char_images)
# 解码结果
result = ""
for pred in predictions:
index = np.argmax(pred)
result += self.char_set[index]
return result
# 使用Frida自动获取验证码
def auto_get_captcha():
# Frida脚本获取验证码图片
script_code = """
Java.perform(function() {
var ImageView = Java.use("android.widget.ImageView");
ImageView.setImageBitmap.implementation = function(bitmap) {
// 检查是否是验证码图片
var tag = this.getTag();
if (tag && tag.toString().includes("captcha")) {
console.log("[+] 发现验证码图片");
// 将图片转换为字节数组
var stream = Java.use("java.io.ByteArrayOutputStream").$new();
bitmap.compress(Java.use("android.graphics.Bitmap$CompressFormat").PNG.value, 100, stream);
var byteArray = stream.toByteArray();
// 发送到Python脚本
send({
type: 'captcha_image',
data: byteArray
});
}
return this.setImageBitmap(bitmap);
};
});
"""
# 加载Frida脚本
session = frida.get_usb_device().attach('com.damai.app')
script = session.create_script(script_code)
# 处理验证码图片
def on_message(message, data):
if message['type'] == 'send' and message['payload']['type'] == 'captcha_image':
# 保存验证码图片
with open('captcha.png', 'wb') as f:
f.write(data)
# 识别验证码
recognizer = CaptchaRecognizer('captcha_model.h5')
result = recognizer.recognize('captcha.png')
print(f"验证码识别结果: {result}")
# 自动填入验证码
script.post({
'type': 'fill_captcha',
'result': result
})
script.on('message', on_message)
script.load()
4.1.2 滑动验证码处理
python
# 滑动验证码处理
class SliderCaptchaSolver:
def __init__(self):
self.template = cv2.imread('slider_template.png', 0)
def solve(self, captcha_image_path):
# 读取验证码图片
captcha = cv2.imread(captcha_image_path, 0)
# 模板匹配
result = cv2.matchTemplate(captcha, self.template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
# 计算滑动距离
slider_x = max_loc[0]
# 生成滑动轨迹
trajectory = self.generate_trajectory(slider_x)
return trajectory
def generate_trajectory(self, distance):
# 生成模拟人类行为的滑动轨迹
trajectory = []
# 加速阶段
for i in range(int(distance * 0.3)):
t = i / (distance * 0.3)
speed = 2 * t # 加速度为2
trajectory.append(int(speed * i))
# 匀速阶段
for i in range(int(distance * 0.4)):
trajectory.append(int(distance * 0.3 + i))
# 减速阶段
for i in range(int(distance * 0.3)):
t = i / (distance * 0.3)
speed = 2 * (1 - t) # 减速度为2
trajectory.append(int(distance * 0.7 + speed * i))
return trajectory
# 使用Frida模拟滑动操作
def simulate_slider(trajectory):
script_code = f"""
Java.perform(function() {{
var SliderView = Java.use("com.damai.ui.SliderView");
SliderView.onTouchEvent.implementation = function(event) {{
console.log("[+] 模拟滑动操作");
// 获取滑动轨迹
var trajectory = {trajectory};
// 模拟按下事件
var downEvent = Java.use("android.view.MotionEvent").obtain(
System.currentTimeMillis(),
System.currentTimeMillis(),
Java.use("android.view.MotionEvent").ACTION_DOWN.value,
50, // 起始X坐标
100, // 起始Y坐标
0
);
// 模拟移动事件
for (var i = 0; i < trajectory.length; i++) {{
var moveEvent = Java.use("android.view.MotionEvent").obtain(
System.currentTimeMillis(),
System.currentTimeMillis(),
Java.use("android.view.MotionEvent").ACTION_MOVE.value,
50 + trajectory[i], // 移动X坐标
100, // Y坐标保持不变
0
);
this.onTouchEvent(moveEvent);
Java.use("java.lang.Thread").sleep(10); // 短暂延迟
}}
// 模拟抬起事件
var upEvent = Java.use("android.view.MotionEvent").obtain(
System.currentTimeMillis(),
System.currentTimeMillis(),
Java.use("android.view.MotionEvent").ACTION_UP.value,
50 + trajectory[trajectory.length - 1], // 结束X坐标
100, // Y坐标保持不变
0
);
return this.onTouchEvent(upEvent);
}};
}});
"""
# 加载Frida脚本
session = frida.get_usb_device().attach('com.damai.app')
script = session.create_script(script_code)
script.load()
4.2 行为模拟与反检测
大麦APP通过分析用户行为模式来识别自动化工具,模拟人类行为是绕过检测的关键:
4.2.1 随机延迟与操作间隔
javascript
// 随机延迟生成器
class RandomDelayGenerator {
constructor(baseDelay = 1000, variance = 500) {
this.baseDelay = baseDelay;
this.variance = variance;
}
// 生成正态分布的随机延迟
generateDelay() {
// Box-Muller变换生成正态分布随机数
let u = 0, v = 0;
while(u === 0) u = Math.random(); // 转换[0,1)区间
while(v === 0) v = Math.random();
const z = Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v);
// 限制在合理范围内
const delay = this.baseDelay + z * this.variance;
return Math.max(100, Math.min(delay, this.baseDelay + this.variance * 3));
}
// 生成符合人类操作习惯的延迟
generateHumanLikeDelay() {
// 人类操作通常在200ms到2s之间
const minDelay = 200;
const maxDelay = 2000;
// 使用Beta分布模拟人类操作延迟
const alpha = 2;
const beta = 5;
let u = 0, v = 0;
while(u === 0) u = Math.random();
while(v === 0) v = Math.random();
const betaRandom = Math.pow(u, 1/alpha) / (Math.pow(u, 1/alpha) + Math.pow(v, 1/beta));
return minDelay + betaRandom * (maxDelay - minDelay);
}
}
// 使用示例
const delayGenerator = new RandomDelayGenerator();
// 模拟点击操作
async function simulateClick(element) {
// 随机延迟
const delay = delayGenerator.generateHumanLikeDelay();
await new Promise(resolve => setTimeout(resolve, delay));
// 模拟点击
const rect = element.getBoundingClientRect();
const x = rect.left + rect.width * (0.3 + Math.random() * 0.4); // 点击中心区域
const y = rect.top + rect.height * (0.3 + Math.random() * 0.4);
const clickEvent = new MouseEvent('click', {
view: window,
bubbles: true,
cancelable: true,
clientX: x,
clientY: y
});
element.dispatchEvent(clickEvent);
}
4.2.2 操作轨迹模拟
javascript
// 操作轨迹模拟器
class TrajectorySimulator {
constructor() {
this.points = [];
}
// 生成贝塞尔曲线轨迹
generateBezierTrajectory(startPoint, endPoint, controlPoints = []) {
const trajectory = [];
const steps = 30; // 轨迹点数
for (let t = 0; t <= 1; t += 1 / steps) {
let point = this.calculateBezierPoint(t, startPoint, endPoint, controlPoints);
// 添加轻微抖动
point.x += (Math.random() - 0.5) * 2;
point.y += (Math.random() - 0.5) * 2;
trajectory.push(point);
}
return trajectory;
}
// 计算贝塞尔曲线上的点
calculateBezierPoint(t, startPoint, endPoint, controlPoints) {
let x = startPoint.x * Math.pow(1 - t, 3);
let y = startPoint.y * Math.pow(1 - t, 3);
if (controlPoints.length >= 1) {
x += 3 * controlPoints[0].x * t * Math.pow(1 - t, 2);
y += 3 * controlPoints[0].y * t * Math.pow(1 - t, 2);
}
if (controlPoints.length >= 2) {
x += 3 * controlPoints[1].x * Math.pow(t, 2) * (1 - t);
y += 3 * controlPoints[1].y * Math.pow(t, 2) * (1 - t);
}
x += endPoint.x * Math.pow(t, 3);
y += endPoint.y * Math.pow(t, 3);
return { x, y };
}
// 模拟滑动操作
async simulateSwipe(startPoint, endPoint, duration = 500) {
const trajectory = this.generateBezierTrajectory(startPoint, endPoint);
const stepDuration = duration / trajectory.length;
// 触摸开始
this.touchStart(startPoint);
// 沿轨迹移动
for (let i = 1; i < trajectory.length; i++) {
await new Promise(resolve => setTimeout(resolve, stepDuration));
this.touchMove(trajectory[i]);
}
// 触摸结束
this.touchEnd(endPoint);
}
touchStart(point) {
// 实现触摸开始事件
const touchEvent = new TouchEvent('touchstart', {
touches: [new Touch({
identifier: 0,
target: document.body,
clientX: point.x,
clientY: point.y
})]
});
document.body.dispatchEvent(touchEvent);
}
touchMove(point) {
// 实现触摸移动事件
const touchEvent = new TouchEvent('touchmove', {
touches: [new Touch({
identifier: 0,
target: document.body,
clientX: point.x,
clientY: point.y
})]
});
document.body.dispatchEvent(touchEvent);
}
touchEnd(point) {
// 实现触摸结束事件
const touchEvent = new TouchEvent('touchend', {
changedTouches: [new Touch({
identifier: 0,
target: document.body,
clientX: point.x,
clientY: point.y
})]
});
document.body.dispatchEvent(touchEvent);
}
}
4.3 多设备协同抢票
使用多设备协同抢票可以大幅提高成功率,但需要解决设备间同步和负载均衡问题:
4.3.1 设备集群管理
python
# 设备集群管理器
class DeviceClusterManager:
def __init__(self):
self.devices = []
self.device_stats = {}
self.task_queue = Queue()
self.result_queue = Queue()
def add_device(self, device_id, device_type, frida_port):
# 添加设备到集群
device = {
'id': device_id,
'type': device_type, # 'android' or 'ios'
'frida_port': frida_port,
'status': 'idle',
'last_used': 0,
'success_count': 0,
'failure_count': 0
}
self.devices.append(device)
self.device_stats[device_id] = device
# 启动设备工作线程
threading.Thread(
target=self.device_worker,
args=(device,),
daemon=True
).start()
def device_worker(self, device):
# 设备工作线程
while True:
try:
# 从队列获取任务
task = self.task_queue.get(timeout=1)
# 更新设备状态
device['status'] = 'busy'
device['last_used'] = time.time()
# 执行任务
result = self.execute_task(device, task)
# 更新统计
if result['success']:
device['success_count'] += 1
else:
device['failure_count'] += 1
# 返回结果
self.result_queue.put({
'device_id': device['id'],
'task_id': task['id'],
'result': result
})
# 重置设备状态
device['status'] = 'idle'
except Exception as e:
print(f"设备 {device['id']} 工作异常: {e}")
device['status'] = 'error'
def execute_task(self, device, task):
# 执行抢票任务
try:
# 连接Frida
if device['type'] == 'android':
frida_device = frida.get_device_manager().add_remote_device(f"127.0.0.1:{device['frida_port']}")
else: # iOS
frida_device = frida.get_usb_device()
# 附加到大麦APP
session = frida_device.attach('com.damai.app')
# 加载脚本
with open('damai_hook.js', 'r') as f:
script_code = f.read()
script = session.create_script(script_code)
# 设置任务参数
script.post({
'type': 'set_task',
'task': task
})
# 执行任务
script.load()
# 等待结果
result = self.wait_for_result(script, timeout=30)
return result
except Exception as e:
return {
'success': False,
'error': str(e)
}
def wait_for_result(self, script, timeout=30):
# 等待任务结果
result_received = threading.Event()
result_data = {}
def on_message(message, data):
if message['type'] == 'send' and message['payload']['type'] == 'task_result':
result_data.update(message['payload']['data'])
result_received.set()
script.on('message', on_message)
# 等待结果或超时
if result_received.wait(timeout=timeout):
return result_data
else:
return {
'success': False,
'error': '任务超时'
}
def distribute_tasks(self, tasks):
# 分发任务到设备集群
for task in tasks:
self.task_queue.put(task)
def collect_results(self, expected_count):
# 收集任务结果
results = []
while len(results) < expected_count:
try:
result = self.result_queue.get(timeout=1)
results.append(result)
except:
continue
return results
def get_best_device(self):
# 获取最佳设备(成功率最高且最近未使用)
now = time.time()
best_device = None
best_score = -1
for device in self.devices:
if device['status'] != 'idle':
continue
# 计算设备分数
total_requests = device['success_count'] + device['failure_count']
if total_requests == 0:
success_rate = 1.0 # 新设备给予最高优先级
else:
success_rate = device['success_count'] / total_requests
# 考虑最近使用时间
time_since_last_use = now - device['last_used']
time_factor = min(time_since_last_use / 60, 1) # 1分钟后达到最大值
# 综合评分
score = success_rate * 0.7 + time_factor * 0.3
if score > best_score:
best_score = score
best_device = device
return best_device
4.3.2 任务调度策略
python
# 任务调度器
class TaskScheduler:
def __init__(self, cluster_manager):
self.cluster_manager = cluster_manager
self.task_queue = Queue()
self.priority_queue = Queue()
self.running = False
def add_task(self, task, priority=0):
# 添加任务
task_item = {
'id': str(uuid.uuid4()),
'task': task,
'priority': priority,
'created_at': time.time(),
'retry_count': 0,
'max_retries': 3
}
if priority > 0:
self.priority_queue.put(task_item)
else:
self.task_queue.put(task_item)
def start(self):
# 启动调度器
self.running = True
threading.Thread(target=self.scheduler_loop, daemon=True).start()
def stop(self):
# 停止调度器
self.running = False
def scheduler_loop(self):
# 调度器主循环
while self.running:
try:
# 优先处理高优先级任务
task_item = None
try:
task_item = self.priority_queue.get_nowait()
except:
try:
task_item = self.task_queue.get_nowait()
except:
# 没有任务,短暂等待
time.sleep(0.1)
continue
# 获取最佳设备
device = self.cluster_manager.get_best_device()
if not device:
# 没有可用设备,将任务放回队列
if task_item['priority'] > 0:
self.priority_queue.put(task_item)
else:
self.task_queue.put(task_item)
time.sleep(1)
continue
# 分发任务到设备
self.cluster_manager.task_queue.put({
'id': task_item['id'],
'device_id': device['id'],
'task': task_item['task']
})
except Exception as e:
print(f"调度器异常: {e}")
time.sleep(1)
def handle_task_result(self, result):
# 处理任务结果
task_id = result['task_id']
device_id = result['device_id']
task_result = result['result']
if task_result['success']:
print(f"任务 {task_id} 在设备 {device_id} 上成功完成")
else:
print(f"任务 {task_id} 在设备 {device_id} 上失败: {task_result['error']}")
# 任务失败,决定是否重试
# 这里可以实现重试逻辑
五、总结
-
移动端抓包分析:
- Charles抓包工具的高级配置与使用
- HTTPS流量解密与证书绑定绕过
- 大麦APP核心API协议分析
- 动态签名算法破解
-
SO库Hook破盾技术:
- Android/iOS平台SO库Hook方法
- 反调试与完整性检测绕过
- 设备指纹伪造与行为模拟
- Frida高级技巧与Stalker动态追踪
-
实战案例与效果分析:
- Android/iOS平台完整抢票流程
- 多设备协同抢票与负载均衡
- 验证码自动识别与处理
- 性能优化与成功率提升
-
高级对抗策略:
- 验证码自动识别与处理
- 行为模拟与反检测技术
- 多设备协同抢票与任务调度
- 风控系统绕过与反风控
结语
技术的发展应当服务于人类社会的进步,而不是用于破坏规则和获取不当利益。希望读者能够以学习的心态阅读本文,将所学知识应用于合法合规的领域,共同推动移动端安全技术的发展。
再次提醒:本文仅供学习交流,请勿用于任何非法目的,严禁商业化利用或参与黄牛活动!