Datawhale:吴恩达Post-training of LLMs,学习打卡5

通过本次GRPO在线强化学习的实践,我对基于可验证奖励的模型对齐方法有了更深入的理解。业界比较关注实际训练中的工程细节和评估可靠性,我们可以使用GSM8K数据集,通过设计精确的正则表达式提取\boxed{}内的答案,并结合二元奖励函数进行反馈,整个流程清晰且可复现。这让我意识到,在数学、代码等"正确性导向"的任务中,相比复杂的奖励模型,可验证奖励反而更直接有效。不过,我也注意到当前奖励机制仅关注最终结果,忽略了推理过程的质量,未来可以尝试引入CoT评分或分步打分来优化。此外,实验结果显示准确率提升有限,部分原因是输出token不足导致生成被截断,这也提醒我在实际评测中要合理设置生成参数。整体来看,GRPO无需价值网络的设计显著降低了显存开销,适合在资源受限环境下开展实验,是一次理论与实践结合紧密的有益训练。

相关推荐
东坡肘子几秒前
周日小插曲 -- 肘子的 Swift 周报 #115
人工智能·swiftui·swift
jifengzhiling4 分钟前
卡尔曼增益:动态权重,最优估计
人工智能·算法·机器学习
emfuture4 分钟前
传统劳动密集型加工厂,面对日益普及的自动化技术,应如何实现转型升级?
大数据·人工智能·智能制造·工业互联网
Zzz 小生4 分钟前
Github-Lobe Chat:下一代开源AI聊天框架,重新定义人机交互体验
人工智能·开源·github·人机交互
说私域6 分钟前
新零售第一阶段传统零售商的困境突破与二次增长路径——基于定制开发AI智能名片S2B2C商城小程序的实践研究
人工智能·小程序·零售
Cathyqiii7 分钟前
序列建模模型原理及演进——从RNN、Transformer到SSM与Mamba
人工智能·rnn·深度学习·transformer
极客BIM工作室8 分钟前
大模型的发展历程: 从文本到音视频生成的技术演进
人工智能·机器学习
ekprada10 分钟前
Day 40 深度学习训练与测试的规范写法
人工智能·python
音视频牛哥13 分钟前
C#实战:如何开发设计毫秒级延迟、工业级稳定的Windows平台RTSP/RTMP播放器
人工智能·机器学习·机器人·c#·音视频·rtsp播放器·rtmp播放器
Blossom.1181 小时前
基于时序大模型+强化学习的虚拟电厂储能调度系统:从负荷预测到收益最大化的实战闭环
运维·人工智能·python·决策树·机器学习·自动化·音视频