【2025版李宏毅机器学习系列课程】CH2 机器学习 Training Guide

作业流程

General Guide

  • model bias:增加模型的flexibility,比如激活函数、更多层数等
  • model bias 还是 optimization ?
    • comparison
    • Start from shallower network (or other models), which are easier to optimize
    • If deeper networks do not obtain smaller loss on training data, then there is optimization issue.
  • Overfitting:flexibility太大,training data不够多导致的
    • more training data:
      • data augmentation 数据增强,对现有数据进行各种变换来生成更多数据,要合理变换
    • less flexibility , constrained model:
      • Less parameters:less神经元、less层数
      • sharing parameters:CNN
      • Less features
      • Early stopping
      • Regularization
      • Dropout

Bias-Complexity Trade-off

  • benchmark corpora:基准测试语料库
  • how to select the best one?
    • 不建议的做法:直接比较model 在 public testing set的分数来选择。WHY?类比猴子敲出莎士比亚,如果test很多遍,即使是很废模型,还是有可能拿到好分数
    • testing set分public和private:public one 可以看成是训练时会用的,private one可以理解为实际放出来给大众用的,在public testing set上表现好可能是用了某些手段导致在此过拟合,但是在private testing set的表现不好
    • 建议的做法:cross validation,用validation set 来选model,少看public testing set的结果
    • n-fold cross validation

Mismatch

  • training and testing data have different distribution

critical point:local minima、saddle point

  • gradient为0的点统称critical point:比如local minima、saddle point
  • 判断critical point的类型:Hessian
  • saddle point:可以沿着负特征值的特征向量去更新参数
  • local minima:When you have lots of parameters, perhaps local minima is rare
    可能在高维空间只是个saddle point
  • 经验上看,其实local minima其实不常见,多数是saddle point

Batch

  • shuffle after each epoch

  • Why batch? 如果不用batch,那就是整个training set一起训练,相当于batch size = training set size,即极端情况的large batch

    • Small Batch v.s. Large Batch

      • large batch:Long time for cool down, but powerful(稳定)
      • small batch:Short time for cool down, but powerful but noisy
    • 时间上,large batch 跑完一个epoch的时间反而短,因为GPU并行运算的能力

    • 但noisy反而会有利于training

    • 而且 Small batch is better on testing data,大的batch size会让我们倾向于走到峡谷里面

  • 总结:Batch size is a hyperparameter you have to decide

相关推荐
格林威5 分钟前
Baumer相机铸件气孔与缩松识别:提升铸造良品率的 6 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·opencv·算法·安全·计算机视觉·堡盟相机·baumer相机
光羽隹衡6 分钟前
计算机视觉——Opencv(图像金字塔)
人工智能·opencv·计算机视觉
zhengfei6118 分钟前
人工智能驱动的暗网开源情报工具
人工智能·开源
余俊晖10 分钟前
多模态视觉语言模型:Molmo2训练数据、训练配方
人工智能·语言模型·自然语言处理
葫三生12 分钟前
存在之思:三生原理与现象学对话可能?
数据库·人工智能·神经网络·算法·区块链
UI设计兰亭妙微13 分钟前
UI 设计新范式:从国际案例看体验与商业的融合之道
人工智能·ui·b端设计
老蒋每日coding17 分钟前
AIGC领域多模态大模型的知识图谱构建:技术框架与实践路径
人工智能·aigc·知识图谱
布兰妮甜21 分钟前
Photoshop中通过图层混合模式实现图像元素透明度渐变过渡的完整指南
人工智能·ui·生活·photoshop·文化
AIGCmitutu22 分钟前
Photoshop抠图插件2026选择指南,Ps抠图插件哪个好用?
人工智能·ui·ai绘画·photoshop·ps
唐诺24 分钟前
深入了解AI
人工智能·ai