【2025版李宏毅机器学习系列课程】CH2 机器学习 Training Guide

作业流程

General Guide

  • model bias:增加模型的flexibility,比如激活函数、更多层数等
  • model bias 还是 optimization ?
    • comparison
    • Start from shallower network (or other models), which are easier to optimize
    • If deeper networks do not obtain smaller loss on training data, then there is optimization issue.
  • Overfitting:flexibility太大,training data不够多导致的
    • more training data:
      • data augmentation 数据增强,对现有数据进行各种变换来生成更多数据,要合理变换
    • less flexibility , constrained model:
      • Less parameters:less神经元、less层数
      • sharing parameters:CNN
      • Less features
      • Early stopping
      • Regularization
      • Dropout

Bias-Complexity Trade-off

  • benchmark corpora:基准测试语料库
  • how to select the best one?
    • 不建议的做法:直接比较model 在 public testing set的分数来选择。WHY?类比猴子敲出莎士比亚,如果test很多遍,即使是很废模型,还是有可能拿到好分数
    • testing set分public和private:public one 可以看成是训练时会用的,private one可以理解为实际放出来给大众用的,在public testing set上表现好可能是用了某些手段导致在此过拟合,但是在private testing set的表现不好
    • 建议的做法:cross validation,用validation set 来选model,少看public testing set的结果
    • n-fold cross validation

Mismatch

  • training and testing data have different distribution

critical point:local minima、saddle point

  • gradient为0的点统称critical point:比如local minima、saddle point
  • 判断critical point的类型:Hessian
  • saddle point:可以沿着负特征值的特征向量去更新参数
  • local minima:When you have lots of parameters, perhaps local minima is rare
    可能在高维空间只是个saddle point
  • 经验上看,其实local minima其实不常见,多数是saddle point

Batch

  • shuffle after each epoch

  • Why batch? 如果不用batch,那就是整个training set一起训练,相当于batch size = training set size,即极端情况的large batch

    • Small Batch v.s. Large Batch

      • large batch:Long time for cool down, but powerful(稳定)
      • small batch:Short time for cool down, but powerful but noisy
    • 时间上,large batch 跑完一个epoch的时间反而短,因为GPU并行运算的能力

    • 但noisy反而会有利于training

    • 而且 Small batch is better on testing data,大的batch size会让我们倾向于走到峡谷里面

  • 总结:Batch size is a hyperparameter you have to decide

相关推荐
Q26433650231 小时前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
Mintopia1 小时前
🌐 多用户并发请求下的 WebAIGC 服务稳定性技术保障
javascript·人工智能·自动化运维
是店小二呀2 小时前
Doubao-Seed-Code 打造一个专属的规划平台
人工智能·aigc·doubao
幂律智能3 小时前
幂律智能入选“AI100应用标杆”,赋能产业发展新范式
人工智能·百度
咚咚王者4 小时前
人工智能之数据分析 numpy:第十章 副本视图
人工智能·数据分析·numpy
Dev7z4 小时前
让阅卷不再繁琐:图像识别与数据分析提升智能答题卡评分效率
人工智能·计算机视觉
咚咚王者4 小时前
人工智能之数据分析 numpy:第十一章 字符串与字节交换
人工智能·数据分析·numpy
数字孪生家族6 小时前
视频孪生与空间智能:重构数字时空认知,定义智能决策新范式
人工智能·重构·空间智能·视频孪生与空间智能
FL171713147 小时前
Pytorch保存pt和pkl
人工智能·pytorch·python