【Redis】Hash类型介绍

目录

  • 一、简介
  • 二、相关命令
    • [2.1 hset 和 hget](#2.1 hset 和 hget)
    • [2.2 hexists](#2.2 hexists)
    • [2.3 hdel](#2.3 hdel)
    • [2.4 hkeys](#2.4 hkeys)
    • [2.5 hvals](#2.5 hvals)
    • [2.6 hgetall](#2.6 hgetall)
    • [2.7 hmget](#2.7 hmget)
    • [2.8 hlen](#2.8 hlen)
    • [2.9 hsetnx](#2.9 hsetnx)
    • [2.10 hincrby](#2.10 hincrby)
    • [2.11 hincrbyfloat](#2.11 hincrbyfloat)
    • [2.12 小结](#2.12 小结)
  • 三、编码方式
  • 四、应用场景
    • [4.1 作为缓存](#4.1 作为缓存)

一、简介

在 Redis 中,哈希类型是指值本⾝⼜是⼀个键值对结构,形如 key = "key",value = { { field1, value1 }, ..., {fieldN, valueN} },在Redis中为了与key - value作区分,将Hash类型键值对结构表示为filed - value。

String与Hash对比图:

二、相关命令

2.1 hset 和 hget

hset: 设置 hash 中指定的字段(field)的值(value)。

语法:hset key field value [field value ...]

命令有效版本:2.0.0 之后

时间复杂度:插⼊⼀组 field 为 O(1), 插⼊ N 组 field 为 O(N)

返回值:添加的字段的个数。

也可以当修改字段的效果:

hget:获取 hash 中指定字段的值。

语法:hget key filed

命令有效版本:2.0.0 之后

时间复杂度:O(1)

返回值:字段对应的值或者 nil。

2.2 hexists

hexists判断 hash 中是否有指定的字段。

语法:hexists key filed

命令有效版本:2.0.0 之后

时间复杂度:O(1)

返回值:1 表⽰存在,0 表⽰不存在。

2.3 hdel

hdel删除 hash 中指定的字段。

语法:hdel key field [field ...]

命令有效版本:2.0.0之后

时间复杂度:删除⼀个元素为 O(1). 删除 N 个元素为 O(N).

返回值:本次操作删除的字段个数。

2.4 hkeys

hkeys获取 hash 中的所有字段。

语法:hkeys key

命令有效版本:2.0.0 之后

时间复杂度:O(N), N 为 field 的个数.

返回值:字段列表。

2.5 hvals

hvals 获取 hash 中的所有的值。

语法:hvals key

命令有效版本:2.0.0 之后

时间复杂度:O(N), N 为 field 的个数.

返回值:Hash所有value列表。

2.6 hgetall

hgetall获取 hash 中的所有的字段和值。

语法:hgetall key

命令有效版本:2.0.0 之后

时间复杂度:O(N), N 为 field 的个数.

返回值:Hash所有字段和对应的值。

2.7 hmget

hmget⼀次获取 hash 中多个字段的值。

hmget key field [field ...]

命令有效版本:2.0.0 之后

时间复杂度:只查询⼀个元素为 O(1), 查询多个元素为 O(N), N 为查询元素个数.

返回值:字段对应的值或者 nil。

2.8 hlen

hlen获取 hash 中的所有字段的个数。

语法:hlen key

命令有效版本:2.0.0 之后

时间复杂度:O(1)

返回值:字段个数。

2.9 hsetnx

hsetnx在字段不存在的情况下,设置 hash 中的字段和值。

语法:hsetnx key field value

命令有效版本:2.0.0 之后

时间复杂度:O(1)

返回值:1表⽰设置成功,0 表⽰失败。

2.10 hincrby

hincrby将 hash 中字段对应的数值(必须是整数)添加指定的值。

语法: hincrby key field increment

命令有效版本:2.0.0之后

时间复杂度:O(1)

返回值:该字段变化之后的值。

2.11 hincrbyfloat

hincrbyfloathincrby的浮点数版本, 将 hash 中字段对应的数值(可以是整数和浮点数)添加指定的值。

语法: hincrbyfloat key field increment

命令有效版本:2.6.0之后

时间复杂度:O(1)

返回值:该字段变化之后的值。

2.12 小结

命令 执⾏效果 时间复杂度
hset key field value 设置值 O(1)
hget key field 获取值 O(1)
hdel key field [field ...] 删除 field O(k), k 是 field 个数
hlen key 计算 field 个数 O(1)
hgetall key 获取所有的 field-value O(k), k 是 field 个数
hmget key field [field ...] 批量获取 field-value O(k), k 是 field 个数
hmset key field value [field value ...] 批量获取 field-value O(k), k 是 field 个数
hexists key field 判断 field 是否存在 O(1)
hkeys key 获取所有的 field O(k), k 是 field 个数
hvals key 获取所有的 value O(k), k 是 field 个数
hsetnx key field value 设置值,但必须在 field 不存在时才能设置成功 O(1)
hincrby key field n 对应 field-value +n O(1)
hincrbyfloat key field n 对应 field-value +n O(1)
hstrlen key field 计算 value 的字符串⻓度 O(1)

三、编码方式

哈希的内部编码有两种:

  • ziplist(压缩列表):当哈希类型元素个数⼩于 hash-max-ziplist-entries 配置(默认 512 个)、同时所有值都⼩于 hash-max-ziplist-value 配置(默认 64 字节)时,Redis 会使⽤ ziplist 作为哈希的内部实现,ziplist 使⽤更加紧凑的结构实现多个元素的连续存储,所以在节省内存⽅⾯⽐ hashtable 更加优秀。
  • hashtable(哈希表):当哈希类型⽆法满⾜ ziplist 的条件时,Redis 会使⽤ hashtable 作为哈希的内部实现,因为此时 ziplist 的读写效率会下降,⽽ hashtable 的读写时间复杂度为 O(1)。

四、应用场景

4.1 作为缓存

存储结构化的数据的时候,使用 hash 更加合适。

使用hash表示:

相关推荐
欧亚学术9 小时前
突发!刚刚新增17本期刊被剔除!
数据库·论文·sci·期刊·博士·scopus·发表
黑白极客10 小时前
怎么给字符串字段加索引?日志系统 一条更新语句是怎么执行的
java·数据库·sql·mysql·引擎
大厂技术总监下海10 小时前
数据湖加速、实时数仓、统一查询层:Apache Doris 如何成为现代数据架构的“高性能中枢”?
大数据·数据库·算法·apache
LeenixP11 小时前
RK3576-Debian12删除userdata分区
linux·运维·服务器·数据库·debian·开发板
知行合一。。。11 小时前
Python--03--函数入门
android·数据库·python
X***078811 小时前
理解 MySQL 的索引设计逻辑:从数据结构到实际查询性能的系统分析
数据库·mysql·sqlite
爬山算法11 小时前
Hibernate(31)Hibernate的原生SQL查询是什么?
数据库·sql·hibernate
Yuiiii__11 小时前
一次并不简单的 Spring 循环依赖排查
java·开发语言·数据库
-曾牛11 小时前
Yak语言核心基础:语句、变量与表达式详解
数据库·python·网络安全·golang·渗透测试·安全开发·yak
天意pt11 小时前
Blog-SSR 系统操作手册(v1.0.0)
前端·vue.js·redis·mysql·docker·node.js·express