数据结构核心

数据结构是计算机中组织、存储和管理数据的方式,旨在提高数据操作(如查找、插入、删除)的效率,是算法设计的基础。

一、核心数据结构类型(按逻辑结构分类)

1. 线性结构(数据元素一对一排列)

  • 数组(Array):连续内存存储,支持随机访问(通过索引快速定位),但插入 / 删除需移动元素,适用于数据量固定、查询频繁的场景(如存储学生成绩列表)。
  • 链表(Linked List):非连续内存存储,通过指针 / 引用连接节点,插入 / 删除效率高(无需移动元素),但查询需遍历,适用于数据动态增减、查询较少的场景(如链表式队列)。
  • 栈(Stack):"先进后出"(LIFO)结构,仅允许在栈顶操作(压栈 / 弹栈),适用于括号匹配、函数调用栈、表达式求值等场景。
  • 队列(Queue):"先进先出"(FIFO)结构,允许在队尾插入、队头删除,适用于任务调度、消息队列、广度优先搜索(BFS)等场景。

2. 非线性结构(数据元素一对多 / 多对多排列)

  • 树(Tree) :层级结构,有且仅有一个根节点,子节点间无关联,适用于有序数据存储与查询。常见子类:
    • 二叉树:每个节点最多 2 个子节点(左 / 右子树);
    • 二叉搜索树(BST):左子树值<根节点值<右子树值,支持高效查询(理想时间复杂度 O (logn));
    • 堆(Heap):完全二叉树,分为大顶堆(根节点最大)和小顶堆(根节点最小),适用于优先级队列、Top-K 问题。
  • 图(Graph):由顶点(Vertex)和边(Edge)组成,可表示多对多关系,分为有向图(边有方向)和无向图(边无方向),适用于社交网络、路径规划(如最短路径算法 Dijkstra)等场景。
  • 哈希表(Hash Table):通过哈希函数将键(Key)映射到内存地址,实现 "键 - 值" 快速查找(理想时间复杂度 O (1)),但需处理哈希冲突(如链地址法、开放定址法),适用于缓存、字典(如 Python 的 dict)等场景。

二、数据结构的核心作用

  1. 优化效率:通过合理选择结构减少时间 / 空间开销(如用哈希表替代数组实现快速查找);
  2. 支撑算法:所有算法均依赖数据结构实现(如排序算法需基于数组 / 链表,图算法需基于图结构);
  3. 解决实际问题:针对不同场景匹配最优结构(如用树存储文件系统目录,用队列处理任务排队)
相关推荐
iuu_star4 小时前
C语言数据结构-顺序查找、折半查找
c语言·数据结构·算法
漫随流水4 小时前
leetcode算法(515.在每个树行中找最大值)
数据结构·算法·leetcode·二叉树
一起努力啊~9 小时前
算法刷题--长度最小的子数组
开发语言·数据结构·算法·leetcode
小北方城市网9 小时前
第1课:架构设计核心认知|从0建立架构思维(架构系列入门课)
大数据·网络·数据结构·python·架构·数据库架构
好易学·数据结构9 小时前
可视化图解算法77:零钱兑换(兑换零钱)
数据结构·算法·leetcode·动态规划·力扣·牛客网
独自破碎E10 小时前
【归并】单链表的排序
数据结构·链表
L_090710 小时前
【C++】高阶数据结构 -- 平衡二叉树(AVLTree)
数据结构·c++
冰冰菜的扣jio10 小时前
Redis基础数据结构
数据结构·数据库·redis
Qhumaing10 小时前
C++学习:【PTA】数据结构 7-2 实验6-2(图-邻接表)
数据结构·c++·学习
方便面不加香菜10 小时前
基于顺序表实现通讯录项目
c语言·数据结构