一、算法实现
matlab
function [bestVars, bestRMSE] = CARS(X, y, numSamples, numCV, maxVars)
% 输入参数:
% X: 输入数据矩阵 (样本数×变量数)
% y: 响应变量向量 (样本数×1)
% numSamples: 蒙特卡洛采样次数
% numCV: 交叉验证折数
% maxVars: 最大主成分数
[nSamples, nVars] = size(X);
A = min([nSamples, maxVars]); % 最大主成分数
% 初始化参数
W = zeros(nVars, numSamples);
RMSECV = zeros(numSamples, 1);
% 主循环
for iter = 1:numSamples
% 蒙特卡洛采样(80%训练集)
idx = randperm(nSamples);
trainIdx = idx(1:round(0.8*nSamples));
testIdx = idx(round(0.8*nSamples)+1:end);
% PLS建模
[Xcal, Xval, ycal, yval] = splitData(X, y, trainIdx, testIdx);
[B, ~, ~, ~] = plsregress(Xcal, ycal, A);
% 计算回归系数权重
w = abs(B(1:end-1, end));
W(:, iter) = w / sum(w); % 归一化
% 自适应重加权采样
keepRatio = 0.3; % 保留比例
numKeep = round(keepRatio * nVars);
[~, sortedIdx] = sort(w, 'descend');
selectedVars = sortedIdx(1:numKeep);
% 交叉验证评估
cvModel = fitrpls(X(:,selectedVars), y, 'CVPartition', cvpartition(nSamples,'KFold',numCV));
RMSECV(iter) = kfoldLoss(cvModel);
end
% 选择最优子集
[~, bestIter] = min(RMSECV);
bestVars = find(W(:, bestIter) > 0);
bestRMSE = RMSECV(bestIter);
end
%% 辅助函数:数据分割
function [Xtrain, Xtest, ytrain, ytest] = splitData(X, y, trainIdx, testIdx)
Xtrain = X(trainIdx, :);
Xtest = X(testIdx, :);
ytrain = y(trainIdx);
ytest = y(testIdx);
end
二、测试案例(XRF光谱分析)
matlab
% 加载示例数据(土壤重金属检测)
load('soil_spectrum.mat'); % 包含X(光谱)和y(重金属含量)
% 参数设置
numSamples = 200;
numCV = 5;
maxVars = 50;
% 运行CARS算法
[bestVars, bestRMSE] = CARS(X, y, numSamples, numCV, maxVars);
% 结果可视化
figure;
subplot(2,1,1);
stem(bestVars, 'r', 'LineWidth', 1.5);
xlabel('变量索引'); ylabel('选择次数');
title('变量选择频率分布');
subplot(2,1,2);
plot(1:numSamples, bestRMSE*ones(numSamples,1), 'b-o');
xlabel('迭代次数'); ylabel('RMSECV');
title('最优模型性能');
三、算法优化
-
动态权重调整
引入指数衰减函数优化变量保留比例:
matlabmu = (nVars/2)^(1/(numSamples-1)); k = log(nVars/(2)) / (numSamples-1); keepRatio = mu * exp(-k*iter); -
并行计算加速
使用
parfor加速蒙特卡洛采样:matlabparfor iter = 1:numSamples % 并行执行采样和建模 end -
GPU加速
对大规模数据使用GPU计算:
matlabX_gpu = gpuArray(X); % 后续计算使用gpuArray操作
参考代码 竞争性自适应重加权算法 www.youwenfan.com/contentcsm/79180.html
四、应用场景
-
光谱特征提取
matlab% 高光谱图像分析(示例) hyperspectralData = load('hypercube.mat'); [selectedBands, ~] = CARS(hyperspectralData, labels, 300, 10, 20); -
工业过程监控
matlab% 过程变量优化(示例) processVars = load('process_data.mat'); [keyVars, rmse] = CARS(processVars.X, processVars.y, 200, 5, 15);