机器学习方法(4)强化学习(试错学习)

目录

一、基本原理

二、应用场景


强化学习是一种基于反馈的学习方法,类似于人类通过试错来学习

从学习信号的角度看,强化学习介于监督学习和无监督学习之间。

与监督学习不同,它没有直接的学习信号(如人类标注的类别),而是通过与环境的交互,根据获得的奖励或惩罚来调整行为,以达到预定目标。

一、基本原理

一个有趣的例子是训练小狗分辨水果。

你希望小狗听到指令后能拿回正确的水果,但小狗无法直接理解你的语言。

为此,可以采用奖励机制来引导它

当小狗拿对水果时,给予奖励(例如一块骨头);拿错则不给予奖励。经过多次尝试后,小狗就能学会根据指令拿到正确的水果。

用强化学习训练小狗分辨水果

二、应用场景

强化学习特别适用于那些需要多步决策的任务,

例如机器人行走、投资策略优化以及对弈游戏等。

在这些任务中,每一步决策都会影响最终结果。想象你在下围棋时,每下一子都会收到对手的反馈,这些反馈可能使你处于更有利的位置,也可能使你处于劣势。你会根据反馈不断调整策略,以求获得最终胜利。而高明的棋手不会只关注一个子、一块地的得失,而是着眼于全局胜负

**强化学习正是如此:通过不断接受环境反馈调整策略,目标是实现总体收益最大化。**这也是 AlphaGo 能够利用深度强化学习战胜人类顶尖棋手的重要原因。

相关推荐
kisshuan123961 分钟前
YOLO11-RevCol_声呐图像多目标检测_人员水雷飞机船舶识别与定位
人工智能·目标检测·计算机视觉
lkbhua莱克瓦249 分钟前
人工智能(AI)形象介绍
人工智能·ai
shangjian00710 分钟前
AI大模型-核心概念-深度学习
人工智能·深度学习
十铭忘11 分钟前
windows系统python开源项目环境配置1
人工智能·python
PeterClerk13 分钟前
RAG 评估入门:Recall@k、MRR、nDCG、Faithfulness
人工智能·深度学习·机器学习·语言模型·自然语言处理
Generalzy28 分钟前
langchain deepagent框架
人工智能·python·langchain
人工智能培训34 分钟前
10分钟了解向量数据库(4)
人工智能·机器学习·数据挖掘·深度学习入门·深度学习证书·ai培训证书·ai工程师证书
如果你想拥有什么先让自己配得上拥有39 分钟前
近似数的思考学习
学习
无忧智库40 分钟前
从“数据孤岛”到“城市大脑”:深度拆解某智慧城市“十五五”数字底座建设蓝图
人工智能·智慧城市
Rui_Freely43 分钟前
Vins-Fusion之 SFM准备篇(十二)
人工智能·算法·计算机视觉