机器学习方法(4)强化学习(试错学习)

目录

一、基本原理

二、应用场景


强化学习是一种基于反馈的学习方法,类似于人类通过试错来学习

从学习信号的角度看,强化学习介于监督学习和无监督学习之间。

与监督学习不同,它没有直接的学习信号(如人类标注的类别),而是通过与环境的交互,根据获得的奖励或惩罚来调整行为,以达到预定目标。

一、基本原理

一个有趣的例子是训练小狗分辨水果。

你希望小狗听到指令后能拿回正确的水果,但小狗无法直接理解你的语言。

为此,可以采用奖励机制来引导它

当小狗拿对水果时,给予奖励(例如一块骨头);拿错则不给予奖励。经过多次尝试后,小狗就能学会根据指令拿到正确的水果。

用强化学习训练小狗分辨水果

二、应用场景

强化学习特别适用于那些需要多步决策的任务,

例如机器人行走、投资策略优化以及对弈游戏等。

在这些任务中,每一步决策都会影响最终结果。想象你在下围棋时,每下一子都会收到对手的反馈,这些反馈可能使你处于更有利的位置,也可能使你处于劣势。你会根据反馈不断调整策略,以求获得最终胜利。而高明的棋手不会只关注一个子、一块地的得失,而是着眼于全局胜负

**强化学习正是如此:通过不断接受环境反馈调整策略,目标是实现总体收益最大化。**这也是 AlphaGo 能够利用深度强化学习战胜人类顶尖棋手的重要原因。

相关推荐
Dfreedom.20 小时前
图像滤波:非线性滤波与边缘保留技术
图像处理·人工智能·opencv·计算机视觉·非线性滤波·图像滤波
BackCatK Chen20 小时前
第 1 篇:软件视角扫盲|TMC2240 软件核心特性 + 学习路径(附工具清单)
c语言·stm32·单片机·学习·电机驱动·保姆级教程·tmc2240
深蓝海拓20 小时前
PySide6从0开始学习的笔记(二十五) Qt窗口对象的生命周期和及时销毁
笔记·python·qt·学习·pyqt
小白跃升坊20 小时前
基于1Panel的AI运维
linux·运维·人工智能·ai大模型·教学·ai agent
kicikng20 小时前
走在智能体前沿:智能体来了(西南总部)的AI Agent指挥官与AI调度官实践
人工智能·系统架构·智能体协作·ai agent指挥官·ai调度官·应用层ai
理人综艺好会20 小时前
Web学习之用户认证
前端·学习
测试者家园20 小时前
测试用例智能生成:是效率革命,还是“垃圾进,垃圾出”的新挑战?
人工智能·职场和发展·测试用例·测试策略·质量效能·智能化测试·用例设计
GIS瞧葩菜20 小时前
Cesium 轴拖拽 + 旋转圈拖拽 核心数学知识
人工智能·算法·机器学习
njsgcs20 小时前
dqn和cnn有什么区别 dqn怎么保存训练经验到本地
人工智能·神经网络·cnn
●VON20 小时前
React Native for OpenHarmony:项目目录结构与跨平台构建流程详解
javascript·学习·react native·react.js·架构·跨平台·von