DAY 43 复习日

作业:

kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化

进阶:并拆分成多个文件

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import datasets, transforms
from torchvision.transforms import ToPILImage
from tqdm import tqdm
import matplotlib.pyplot as plt
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image

# 数据处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 使用Kaggle的花朵数据集
dataset = datasets.ImageFolder(root='./flower_data', transform=transform)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

# CNN模型
class FlowerCNN(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(64, 128, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(128, 256, 3, padding=1),  # 用于GradCAM的目标层
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(256 * 28 * 28, 512),
            nn.ReLU(),
            nn.Linear(512, num_classes)
        )
    
    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x

# 训练函数
def train_model(model, epochs=5):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model.to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    
    for epoch in range(epochs):
        model.train()
        train_loss = 0.0
        with tqdm(train_loader, desc=f'Epoch {epoch+1}') as pbar:
            for imgs, labels in pbar:
                imgs, labels = imgs.to(device), labels.to(device)
                optimizer.zero_grad()
                outputs = model(imgs)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
                
                train_loss += loss.item() * imgs.size(0)
                pbar.set_postfix(loss=loss.item())
        
        # 验证
        model.eval()
        val_correct = 0
        with torch.no_grad():
            for imgs, labels in val_loader:
                imgs, labels = imgs.to(device), labels.to(device)
                outputs = model(imgs)
                _, preds = torch.max(outputs, 1)
                val_correct += (preds == labels).sum().item()
        
        print(f'Val Acc: {val_correct/len(val_dataset):.4f}')
    
    return model

# 训练模型
num_classes = len(dataset.classes)
model = FlowerCNN(num_classes)
model = train_model(model)

# Grad-CAM可视化
def visualize_grad_cam(model, img_tensor, target_layer):
    cam = GradCAM(model=model, target_layer=target_layer)
    grayscale_cam = cam(input_tensor=img_tensor.unsqueeze(0))
    grayscale_cam = grayscale_cam[0, :]
    
    # 图像转换
    img = img_tensor.permute(1, 2, 0).numpy()
    img = (img - img.min()) / (img.max() - img.min())  # 归一化
    
    visualization = show_cam_on_image(img, grayscale_cam, use_rgb=True)
    plt.imshow(visualization)
    plt.axis('off')
    plt.show()

# 随机选择一张验证集图片进行可视化
img, label = val_dataset[0]
target_layer = model.features[6]  # 选择最后一个卷积层
visualize_grad_cam(model, img, target_layer)

@浙大疏锦行

相关推荐
o_insist2 分钟前
LangChain1.0 实现 PDF 文档向量检索全流程
人工智能·python·langchain
脑洞AI食验员7 分钟前
智能体来了:用异常与文件处理守住代码底线
人工智能·python
BHXDML7 分钟前
JVM 深度理解 —— 程序的底层运行逻辑
java·开发语言·jvm
Wang's Blog10 分钟前
Nodejs-HardCore: 深入解析DBF文件之二进制文件处理指南
开发语言·nodejs
hoiii18711 分钟前
基于LSB匹配的隐写术MATLAB实现程序
开发语言·matlab
J2虾虾17 分钟前
Java使用的可以使用的脚本执行引擎
java·开发语言·脚本执行
曲幽19 分钟前
FastAPI登录验证:用OAuth2与JWT构筑你的API安全防线
python·fastapi·web·jwt·token·oauth2
幻云201021 分钟前
Next.js指南:从入门到精通
开发语言·javascript·人工智能·python·架构
老马识途2.023 分钟前
java处理接口返回的json数据步骤 包括重试处理,异常抛出,日志打印,注意事项
java·开发语言
CCPC不拿奖不改名28 分钟前
网络与API:从HTTP协议视角理解网络分层原理+面试习题
开发语言·网络·python·网络协议·学习·http·面试