DAY 43 复习日

作业:

kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化

进阶:并拆分成多个文件

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import datasets, transforms
from torchvision.transforms import ToPILImage
from tqdm import tqdm
import matplotlib.pyplot as plt
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image

# 数据处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 使用Kaggle的花朵数据集
dataset = datasets.ImageFolder(root='./flower_data', transform=transform)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

# CNN模型
class FlowerCNN(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(64, 128, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(128, 256, 3, padding=1),  # 用于GradCAM的目标层
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(256 * 28 * 28, 512),
            nn.ReLU(),
            nn.Linear(512, num_classes)
        )
    
    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x

# 训练函数
def train_model(model, epochs=5):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model.to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    
    for epoch in range(epochs):
        model.train()
        train_loss = 0.0
        with tqdm(train_loader, desc=f'Epoch {epoch+1}') as pbar:
            for imgs, labels in pbar:
                imgs, labels = imgs.to(device), labels.to(device)
                optimizer.zero_grad()
                outputs = model(imgs)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
                
                train_loss += loss.item() * imgs.size(0)
                pbar.set_postfix(loss=loss.item())
        
        # 验证
        model.eval()
        val_correct = 0
        with torch.no_grad():
            for imgs, labels in val_loader:
                imgs, labels = imgs.to(device), labels.to(device)
                outputs = model(imgs)
                _, preds = torch.max(outputs, 1)
                val_correct += (preds == labels).sum().item()
        
        print(f'Val Acc: {val_correct/len(val_dataset):.4f}')
    
    return model

# 训练模型
num_classes = len(dataset.classes)
model = FlowerCNN(num_classes)
model = train_model(model)

# Grad-CAM可视化
def visualize_grad_cam(model, img_tensor, target_layer):
    cam = GradCAM(model=model, target_layer=target_layer)
    grayscale_cam = cam(input_tensor=img_tensor.unsqueeze(0))
    grayscale_cam = grayscale_cam[0, :]
    
    # 图像转换
    img = img_tensor.permute(1, 2, 0).numpy()
    img = (img - img.min()) / (img.max() - img.min())  # 归一化
    
    visualization = show_cam_on_image(img, grayscale_cam, use_rgb=True)
    plt.imshow(visualization)
    plt.axis('off')
    plt.show()

# 随机选择一张验证集图片进行可视化
img, label = val_dataset[0]
target_layer = model.features[6]  # 选择最后一个卷积层
visualize_grad_cam(model, img, target_layer)

@浙大疏锦行

相关推荐
Dr.Kun40 分钟前
【鲲码园Python】基于pytorch的鱼品种分类系统(31类)
pytorch·python·分类
froginwe1141 分钟前
ASP ADO:深入解析ActiveX数据对象在ASP中的应用
开发语言
WongKyunban42 分钟前
使用Valgrind检测内存问题(C语言)
c语言·开发语言
Bin二叉42 分钟前
南京大学cpp复习——第二部分(继承)
开发语言·c++·笔记·学习
Zfox_42 分钟前
【Go】环境搭建与基本使用
开发语言·后端·golang
BoBoZz1943 分钟前
OrientedArrow 在两个随机生成的点之间绘制一根带箭头的线,以可视化一个向量
python·vtk·图形渲染·图形处理
民乐团扒谱机43 分钟前
【微实验】携程评论C#爬取实战:突破JavaScript动态加载与反爬虫机制
大数据·开发语言·javascript·爬虫·c#
raoxiaoya44 分钟前
golang本地开发多版本切换,golang多版本管理,vscode切换多版本golang
开发语言·vscode·golang
wjs20241 小时前
R Excel 文件:高效数据处理的利器
开发语言