大模型生成(题目)安全

总目录 大模型相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328

id 论文名 等级 期刊/会议
1 Larger and more instructable language models become less reliable 2024 1 nature
2 CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion 2024 A ACL
3 Advancing LLM Safe Alignment with Safety Representation Ranking 2025 ICML Workshop
4 Improved Generation of Adversarial Examples Against Safety-aligned LLMs 2024 A NeurIPS
5 From text to multimodal: a survey of adversarial example generation in question answering systems 2024 4 Knowledge and Information Systems
6 Reverse Question Answering: Can an LLM Write a Question so Hard (or Bad) that it Can't Answer? 2025 B NAACL
7 Towards human-like questioning: Knowledge base question generation with bias-corrected reinforcement learning from human feedback 2025 B Information Processing & Management
8 Social Bias Benchmark for Generation: A Comparison of Generation and QA-Based Evaluations 2025 arxiv

https://www.doubao.com/chat/19972227671365378
https://chatgpt.com/c/68c1da62-7fc0-832e-9934-b6a7ef381fd9

题目生成安全研究重要(几点可直接用的研究思路)

  1. 攻击面(如何让模型生成"错误/偏见/有害"题)

    利用对抗生成方法(离散 token 替换、梯度启发式搜索、prompt-jailbreak、多示例诱导)来构造题目,使得生成结果包含事实错误、暗含偏见或鼓励危险行为。参考:NeurIPS 2024、对抗样本综述。
    Improved Generation of Adversarial Examples Against Safety-aligned LLMs
    From text to multimodal: a survey of adversarial example generation in question answering systems

  2. 生成-验证不一致(模型会生成自己也答不出来的题)

    设计"生成后验证"流程(生成题目 → 同/异模型验证是否可答 / 是否存在多个正确答案),并用该流程判定"错误性题目"。
    Reverse Question Answering: Can an LLM Write a Question so Hard (or Bad) that it Can't Answer?

  3. 偏见题构造与检测

    构建偏见题模板(性别/种族/阶级/文化敏感话题),通过语法/语义变换扩展(借鉴 JADE 型方法),评估不同模型在题目生成时露出的系统性偏差。
    Towards human-like questioning: Knowledge base question generation with bias-corrected reinforcement learning from human feedback
    Social Bias Benchmark for Generation: A Comparison of Generation and QA-Based Evaluations

  4. 评估指标与数据集

    可用指标:错误率(事实/逻辑)、不可答率(unanswerable)、有害性评分(自动 + 人工标签)、偏见强度(差异化统计)、选项/答案位置偏置、可解释性度量等。
    RobustQA: A Framework for Adversarial Text Generation Analysis on
    Question Answering Systems

    From text to multimodal: a survey of adversarial example generation in question answering systems

  5. 防御思路

    生成管道中加"自动验证器"(QA 模型交叉验证)、内容过滤器(toxicity / safety classifier)、可控生成(约束 prompt / planning),以及对抗训练来提高鲁棒性。
    Adversarial and Safely Scaled Question Generation
    Planning First, Question Second: An LLM-Guided Method for Controllable Question Generation

https://www.kimi.com/chat/d30tvahdjjpv13ulon10

https://chat.deepseek.com/a/chat/s/09a1c365-03c7-4296-8546-99f27789331a

https://www.doubao.com/chat/19971271987401474

https://www.kimi.com/chat/d30u32le09n7a07jghi0

https://chatgpt.com/c/68c1e19a-20a8-8331-9cc6-b852094af4a3

https://www.doubao.com/chat/20004266728986114

https://www.kimi.com/chat/d316mldm2cimqrokh2e0

https://chatgpt.com/c/68c262d0-ffbc-832a-baf2-08647ad9b0cd

A Survey on Neural Question Generation: Methods, Applications,

相关推荐
木枷几秒前
SWE benchmark 安装全过程
人工智能
蓝海星梦5 分钟前
GRPO 算法演进——裁剪机制篇
论文阅读·人工智能·深度学习·算法·自然语言处理·强化学习
Tony Bai8 分钟前
Git 即数据库:Beads (bd) —— 专为 AI Agent 打造的分布式任务追踪引擎
数据库·人工智能·分布式·git
OpenMiniServer8 分钟前
现金流战争模型(Cash Flow Survival Model)
人工智能
雍凉明月夜9 分钟前
瑞芯微RV1106G3板端部署
c++·人工智能·深度学习
人工智能AI技术13 分钟前
CES 2026启示录:端侧AI部署全攻略——用TensorFlow Lite让AI跑在手机上
人工智能
杀生丸学AI14 分钟前
【世界模型】AI世界模型的两次物理大考(测评)
人工智能·扩散模型·具身智能·视频生成·世界模型·自回归·空间智能
ATM00614 分钟前
专其利AI | 开物之芯团队重磅发布「专其利 AI 专利辅助撰写平台」,30 秒定名、10 分钟出五书!
人工智能·大模型·专利撰写·专其利ai
2401_8322981015 分钟前
四大厂商云服务器安全创新对比,筑牢数字化转型安全底座
人工智能
熵减纪元15 分钟前
OpenClaw gateway start 报 401 Invalid API key?一个环境变量的坑
人工智能·aigc