MATLAB 探索轴承动力学:从故障建模到数据模拟

MATLAB轴承动力学代码(正常、外圈故障、内圈故障、滚动体故障),根据滚动轴承故障机理建模(含数学方程建立和公式推导)并在MATLAB中采用ODE45进行数值计算。 可模拟不同轴承故障类型,输出时域波形、相图、轴心轨迹、频谱图、包络谱图、滚道接触力,根据模拟数据后续可在此基础上继续开展故障诊断和剩余寿命预测。

在机械工程领域,轴承的健康状态监测至关重要。通过 MATLAB 对轴承动力学进行模拟,我们能够深入了解不同故障类型下轴承的运行特性,为后续的故障诊断和剩余寿命预测打下基础。

故障机理建模

数学方程建立

轴承的动力学模型较为复杂,以单自由度的轴承故障模型为例,其运动方程可以表示为:

\[ m\ddot{x} + c\dot{x} + kx = F(t) \]

其中,\( m \) 是质量,\( c \) 是阻尼系数,\( k \) 是刚度系数,\( x \) 是位移,\( F(t) \) 是外部激励力。对于不同的故障类型,\( F(t) \) 的形式会有所不同。

公式推导

以滚动体故障为例,当滚动体出现故障时,会产生冲击激励。假设故障点通过载荷区时产生一个脉冲力,这个脉冲力可以用狄拉克函数来近似表示:

\[ F(t) = A\sum_{n = -\infty}^{\infty} \delta(t - nT - \tau) \]

其中,\( A \) 是脉冲幅值,\( T \) 是滚动体通过频率的倒数,\( \tau \) 是故障发生的初始相位。

MATLAB 数值计算

在 MATLAB 中,我们使用 ode45 函数进行数值计算。以下是一个简单的示例代码:

matlab 复制代码
% 定义参数
m = 1; % 质量
c = 10; % 阻尼系数
k = 100; % 刚度系数

% 定义时间范围
tspan = [0 10];

% 定义初始条件
x0 = [0; 0];

% 定义ODE函数
odefun = @(t, x) [x(2); (-c * x(2) - k * x(1)) / m];

% 求解ODE
[t, x] = ode45(odefun, tspan, x0);

在这段代码中,我们首先定义了系统的参数,如质量、阻尼系数和刚度系数。然后,设定了时间范围 tspan 和初始条件 x0odefun 函数定义了我们要求解的微分方程,最后使用 ode45 函数求解这个微分方程。

不同故障类型模拟

外圈故障

外圈故障时,激励力的频率与外圈故障特征频率相关。我们只需要修改 odefun 函数中的激励力部分,例如:

matlab 复制代码
% 外圈故障特征频率
f_outer =...; % 计算外圈故障特征频率的公式
A_outer = 10; % 脉冲幅值

odefun_outer = @(t, x) [x(2); (-c * x(2) - k * x(1) + A_outer * sin(2 * pi * f_outer * t)) / m];

[t_outer, x_outer] = ode45(odefun_outer, tspan, x0);

内圈故障和滚动体故障

类似地,对于内圈故障和滚动体故障,我们也通过修改激励力的形式来模拟。内圈故障激励力频率与内圈故障特征频率相关,滚动体故障激励力如前文所述用脉冲力模拟。

结果输出

时域波形

绘制位移的时域波形,可以直观地看到系统的振动情况。

matlab 复制代码
figure;
plot(t, x(:, 1));
title('正常状态时域波形');
xlabel('时间 (s)');
ylabel('位移 (m)');

相图

相图能展示速度与位移之间的关系。

matlab 复制代码
figure;
plot(x(:, 1), x(:, 2));
title('正常状态相图');
xlabel('位移 (m)');
ylabel('速度 (m/s)');

轴心轨迹、频谱图、包络谱图、滚道接触力

轴心轨迹绘制需要考虑多自由度模型,频谱图可以通过傅里叶变换得到,包络谱图则用于提取故障特征频率的调制信息,滚道接触力可以通过动力学模型进一步推导计算并绘制。具体代码如下:

matlab 复制代码
% 频谱图
figure;
X = fft(x(:, 1));
f = (0:length(X)-1)*(1/(t(2)-t(1)))/length(X);
plot(f(1:length(X)/2), 2/length(X)*abs(X(1:length(X)/2)));
title('频谱图');
xlabel('频率 (Hz)');
ylabel('幅值');

% 包络谱图
% 先对信号进行希尔伯特变换得到解析信号
analytic_signal = hilbert(x(:, 1));
envelope_signal = abs(analytic_signal);
figure;
E = fft(envelope_signal);
plot(f(1:length(E)/2), 2/length(E)*abs(E(1:length(E)/2)));
title('包络谱图');
xlabel('频率 (Hz)');
ylabel('幅值');

% 轴心轨迹(假设多自由度模型,这里仅示意简单二维情况)
% 假设 x1, x2 分别为两个方向位移
figure;
plot(x1(:, 1), x2(:, 1));
title('轴心轨迹');
xlabel('X方向位移 (m)');
ylabel('Y方向位移 (m)');

% 滚道接触力计算(假设简单模型,这里仅示意)
% 接触力与位移、刚度等相关
contact_force = k * x(:, 1);
figure;
plot(t, contact_force);
title('滚道接触力');
xlabel('时间 (s)');
ylabel('接触力 (N)');

通过这些模拟数据,我们可以进一步开展故障诊断和剩余寿命预测,例如利用机器学习算法对不同故障类型的特征进行学习和分类,或者通过数据驱动的方法预测轴承的剩余寿命。这样,MATLAB 轴承动力学模拟就成为了机械健康管理中的一个强大工具。

相关推荐
毕设源码-钟学长1 天前
【开题答辩全过程】以 基于协同过滤推荐算法的小说漫画网站设计与实现为例,包含答辩的问题和答案
算法·机器学习·推荐算法
散峰而望1 天前
【基础算法】算法的“预谋”:前缀和如何改变游戏规则
开发语言·数据结构·c++·算法·github·动态规划·推荐算法
降E大调的梦2 天前
推荐系统浅学与实践
推荐算法
4311媒体网4 天前
U++集成开发环境:提升编码效率
宽度优先·推荐算法
jghhh015 天前
基于MATLAB的协同过滤推荐算法实现
开发语言·matlab·推荐算法
pursue.dreams5 天前
马斯克开源X推荐算法深度解析:Grok驱动的推荐系统架构
系统架构·开源·推荐算法·x
麦麦大数据6 天前
F076 中医中药知识智能问答与图谱构建研究系统 Vue+Flask+Neo4j
vue.js·flask·知识图谱·neo4j·智能问答·推荐算法·中医中药
计算机学姐10 天前
基于SpringBoot的演唱会抢票系统
java·spring boot·后端·spring·tomcat·intellij-idea·推荐算法
BHXDML10 天前
第六章:推荐算法
算法·机器学习·推荐算法
LDG_AGI10 天前
【机器学习】深度学习推荐系统(三十一):X For You Feed 全新推荐系统技术架构深度解析
人工智能·深度学习·算法·机器学习·架构·推荐算法