2025华为AI岗实习面试深度学习基础知识

朴素贝叶斯分类器

朴素贝叶斯分类器认为样本的每个特征都是独立的

分类问题:混淆矩阵、F1、ROC和AUC

多分类问题的混淆矩阵:

对于根据老鼠体重来判断老鼠是否肥胖的二分类问题,使用罗辑回归的方式,并将阈值设置为0.5,高于这个阈值就认为老鼠肥胖

根据这个模型,可以得到分类的正确和错误情况:

通过设置不同的阈值,可以得到不同的分类结果和混淆矩阵

ROC曲线 (Receiver Operator Characteristic)

https://www.bilibili.com/video/BV1CT4114799/?spm_id_from=333.337.search-card.all.click&vd_source=132c74f7a893f6ef64b723d9600c40b7https://www.bilibili.com/video/BV1CT4114799/?spm_id_from=333.337.search-card.all.click&vd_source=132c74f7a893f6ef64b723d9600c40b7

真阳性率(灵敏度):

特异度

ROC曲线中,越接近左上角,模型的效果越好

AUC (Area Under the Curve)

AUC越大的模型效果越好

PCA问题

各种分布的意义:

泊松分布 :描述单位时间/空间内某事件的发生次数

指数分布:连续时间下首次事件发生时间(连续)

二项分布:固定次数试验中成功次数

几何分布: 首次成功的试验次数 (离散)

指数分布和几何分布的区别:

各种attention的变体:MHA,GQA,MQA,MLA(DeepSeek-V2)

Multi-Head Attention (MHA)示意图:

Multi-head Latent Attention(MLA)示意图:

原论文中画的MLA的示意图:

具体计算方式:

其中的W^UK可以和W^UQ合并,W^UV和W^O可以合并

RMSNorm

RMSNorm (Root Mean Square Layer Normalization)是一种 归一化方法,属于 LayerNorm 的变体,主要用于神经网络训练中稳定梯度和加速收敛。它在某些大模型中替代标准 LayerNorm,尤其在 Transformer 系列中。

相关推荐
kisshuan123962 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits2 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅2 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (六)长短期记忆 LSTM
深度学习·ai
qq_356448373 小时前
机器学习基本概念与梯度下降
人工智能
水如烟3 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿3 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——3 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程4 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt