2025华为AI岗实习面试深度学习基础知识

朴素贝叶斯分类器

朴素贝叶斯分类器认为样本的每个特征都是独立的

分类问题:混淆矩阵、F1、ROC和AUC

多分类问题的混淆矩阵:

对于根据老鼠体重来判断老鼠是否肥胖的二分类问题,使用罗辑回归的方式,并将阈值设置为0.5,高于这个阈值就认为老鼠肥胖

根据这个模型,可以得到分类的正确和错误情况:

通过设置不同的阈值,可以得到不同的分类结果和混淆矩阵

ROC曲线 (Receiver Operator Characteristic)

https://www.bilibili.com/video/BV1CT4114799/?spm_id_from=333.337.search-card.all.click&vd_source=132c74f7a893f6ef64b723d9600c40b7https://www.bilibili.com/video/BV1CT4114799/?spm_id_from=333.337.search-card.all.click&vd_source=132c74f7a893f6ef64b723d9600c40b7

真阳性率(灵敏度):

特异度

ROC曲线中,越接近左上角,模型的效果越好

AUC (Area Under the Curve)

AUC越大的模型效果越好

PCA问题

各种分布的意义:

泊松分布 :描述单位时间/空间内某事件的发生次数

指数分布:连续时间下首次事件发生时间(连续)

二项分布:固定次数试验中成功次数

几何分布: 首次成功的试验次数 (离散)

指数分布和几何分布的区别:

各种attention的变体:MHA,GQA,MQA,MLA(DeepSeek-V2)

Multi-Head Attention (MHA)示意图:

Multi-head Latent Attention(MLA)示意图:

原论文中画的MLA的示意图:

具体计算方式:

其中的W^UK可以和W^UQ合并,W^UV和W^O可以合并

RMSNorm

RMSNorm (Root Mean Square Layer Normalization)是一种 归一化方法,属于 LayerNorm 的变体,主要用于神经网络训练中稳定梯度和加速收敛。它在某些大模型中替代标准 LayerNorm,尤其在 Transformer 系列中。

相关推荐
集简云-软件连接神器2 小时前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆2 小时前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow7242442 小时前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
子榆.2 小时前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
七月稻草人2 小时前
CANN生态ops-nn:AIGC的神经网络算子加速内核
人工智能·神经网络·aigc
2501_924878732 小时前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划
芷栀夏2 小时前
CANN开源实战:基于DrissionPage构建企业级网页自动化与数据采集系统
运维·人工智能·开源·自动化·cann
物联网APP开发从业者2 小时前
2026年AI智能软硬件开发领域十大权威认证机构深度剖析
人工智能
MSTcheng.2 小时前
构建自定义算子库:基于ops-nn和aclnn两阶段模式的创新指南
人工智能·cann
User_芊芊君子2 小时前
CANN图编译器GE全面解析:构建高效异构计算图的核心引擎
人工智能·深度学习·神经网络